首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6634篇
  免费   48篇
  国内免费   33篇
安全科学   139篇
废物处理   273篇
环保管理   561篇
综合类   985篇
基础理论   1385篇
环境理论   3篇
污染及防治   1622篇
评价与监测   547篇
社会与环境   1171篇
灾害及防治   29篇
  2022年   69篇
  2021年   87篇
  2020年   41篇
  2019年   57篇
  2018年   121篇
  2017年   140篇
  2016年   170篇
  2015年   110篇
  2014年   224篇
  2013年   541篇
  2012年   246篇
  2011年   293篇
  2010年   233篇
  2009年   270篇
  2008年   317篇
  2007年   355篇
  2006年   283篇
  2005年   270篇
  2004年   250篇
  2003年   228篇
  2002年   212篇
  2001年   248篇
  2000年   200篇
  1999年   90篇
  1998年   67篇
  1997年   74篇
  1996年   63篇
  1995年   81篇
  1994年   66篇
  1993年   56篇
  1992年   57篇
  1991年   59篇
  1990年   71篇
  1989年   54篇
  1988年   42篇
  1987年   38篇
  1986年   46篇
  1985年   46篇
  1984年   51篇
  1983年   36篇
  1982年   46篇
  1981年   36篇
  1980年   44篇
  1979年   44篇
  1975年   30篇
  1974年   30篇
  1973年   33篇
  1972年   39篇
  1971年   30篇
  1969年   31篇
排序方式: 共有6715条查询结果,搜索用时 250 毫秒
551.
Behavioral adaptations of ant species were studied in associations of different biotopes in the Crimean Mountains. The pattern of an association was found to depend on the mode of the territorial behavior of dominant species, irrespective of their number. The dominance hierarchy was more strict in monodominant than in bidominant associations. Ant species demonstrated different behavioral strategies, plasticity of foraging, and avoidance of aggressive encounters. A method for formalizing interspecies relationships and a model describing stochastic properties of the biological system are proposed, which can be useful in solving various ethological and ecological problems.  相似文献   
552.
Membrane bioreactor biofouling is usually described as an extracellular matrix in which biopolymers, inorganic salts and active microbes co-exist. For that reason, biomineralization (BM) models can be useful to describe the spatial organization and environmental constraints within the referred scenario. BM arguments were utilized as background in order to (1) evaluate CaCO3 influence on flux decline; pore blocking and cake layer properties (resistance, permeability and compressibility) in a wide range of Chitosan/Bovine serum albumin (BSA) mixtures during step-pressure runs and, (2) perform membrane autopsies in order to explore the genesis of mineralized extracellular building blocks (MEBB) during cake layer build up. Using low molecular weight chitosan (LC) and BSA, 2 L of 5 LC/BSA mixtures (0.25-1.85 ratio) were pumped to an external ultra filtration (UF) membrane (23.5 cm2, hydrophobic, piezoelectric, 100 kDa as molecular weight cut-off). Eight different pressure steps (40 ± 7 to 540 ± 21 kPa) were applied. Each pressure step was held for 900 s. CaCO3 was added to LC/BSA mixtures at 0.5, 1.5 and 3 mM in order to create MEBB during the filtration tests. Membrane autopsies were performed after the filtration tests using thermo gravimetric, scanning microscopy and specific membrane mass (mg cm−2) analyses. Biopolymer-CaCO3 step-pressure filtration created compressible cake layers (with inner voids). The formation of an internal skeleton of MEBB may contribute to irreversible fouling consolidation. A hypothesis for MEBB genesis and development was set forth.  相似文献   
553.
The present study focused on early responses of land snails Eobania vermiculata to organic environmental contaminants, by investigating the use of a newly-established method for the measurement of protein carbonylation as a new biomarker of terrestrial pollution, as well as by measuring the ROS production and the DNA damage. Land snails were exposed to different concentrations of chlorpyrifos, parathion-methyl or PAHs in vivo or in vitro in the laboratory. The susceptibility of exposed snails was increased in relation to oxidative stress induced by contaminants tested. A statistically significant increase in ROS production, protein carbonylation and DNA damage was revealed in the snails treated with pollutants, compared to the untreated ones. The results indicated the effectiveness of measuring ROS production and DNA damage and reinforce the application of the present ELISA method in organic terrestrial pollution biomonitoring studies.  相似文献   
554.
Chemical recycling of polyamide waste in water was studied using 0.5 L high pressure autoclave at temperatures of 150, 200, 210, 220,230 and 240 °C and at various pressures of 100, 200, 300, 400, 500, 600 and 700 psi (pound per square inch). Viscosity average molecular weight of the polyamide waste sample was determined by Ostwald method and recorded as 1.928 × 103. The reaction was found to be first order with velocity constant in order of 10−2 min−1. The velocity constant and percent conversion of depolymerization reaction at 240 °C and 700 psi pressure were recorded as 2.936 × 10−2 min−1 and 99.99% respectively. The velocity constant was obtained on the basis of measurement of amine value. Kinetic and thermodynamic parameters such as energy of activation, frequency factor, enthalpy of activation were found to be 10.6 kJ mole−1, 0.3719 min−1 and 6.3 kJ mole−1 respectively, at the optimum conditions for maximum depolymerization of polyamide waste.  相似文献   
555.
The Bay of Palma, in Mallorca, is a leading region for beach holidays in Europe. It is based on a mass tourism model strongly modulated by seasonality and with high environmental costs. Main tourism stakeholders are currently implementing complementary activities to mitigate seasonality, regardless of climate change. But climate is—and will remain—a key resource or even a limitation for many types of tourism. Assessing the present conditions and exploring the future evolution of climate potential for these activities have become a priority in this area. To this end, the climate index for tourism (CIT)—originally designed to rate the climate resource of beach tourism—is adapted to specifically appraise cycling, cultural tourism, football, golf, motor boating, sailing and hiking. Climate resources are derived by using observed and projected daily meteorological data. Projections have been obtained from a suite of Regional Climate Models run under the A1B emissions scenario. To properly derive CITs at such local scale, we apply a statistical adjustment. Present climate potentials ratify the appropriateness of the Bay of Palma for satisfactorily practicing all the examined activities. However, optimal conditions are projected to degrade during the peak visitation period while improving in spring and autumn. That is, climate change could further exacerbate the present imbalance between the seasonal distributions of ideal climate potentials and high attendance levels. With this information at hand, policy makers and regional tourism stakeholders can respond more effectively to the great challenge of local adaptation to climate change.  相似文献   
556.
Monthly anomalies of stormy wind–wave heights and return periods are evaluated using secular routine observations in the coastal zone of the northern Black Sea. It is shown that wind–wave anomalies in this region are characterized by high-amplitude quasi-periodical variability with typical timescale of about 50 years. This timescale is determined by temporal variability of the coupled ocean–atmosphere system and coincides with periodicity of Atlantic Multidecadal Oscillation. Atmospheric re-analysis data show that cyclonic activity over the Black Sea basin intensifies when North Atlantic is relatively cold and meridional forms of atmospheric circulation are more frequent in the North Atlantic-Eurasian region. This leads to generation of more frequent Black Sea storm events and enhanced recurrence of extreme waves and results in profound (and mostly negative) environmental consequences. When North Atlantic is relatively warm and meridional forms of atmospheric circulation are less frequent in the North Atlantic-Eurasian region, environmental conditions in the Black Sea region are calmer. Thus, statistics of dangerous events can be wrongly estimated even if relatively long-term (~30 years) time series are considered and interdecadal variability of wind–wave anomalies must be taken into account when the risk assessment is accomplished.  相似文献   
557.
Renewable and alternative fuels have numerous advantages compared with fossil fuels as they are renewable and biodegradable and provide food and energy security and foreign exchange savings besides addressing environmental concerns and socio-economic issues (Yaliwal et al. 2013. International Journal of Sustainable Engineering, doi:10.1080/19397038.2013.801530. Zhu et al. 2011a, Applied Thermal Engineering 31 (14–15): 2271–2278; Zhu et al. 2011b, Fuel 90: 1743-1750; Banapurmath, Tewari, and Hosmath 2008, Renewable Energy 33: 2007-2018; Banapurmath 2009, “Performance, Combustion and Emission Characteristics of a Single Cylinder Direct Injection CI Engine Operated on Dual Fuel Mode Using Honge Oil and Producer Gas.” PhD thesis, 1–195; Banapurmath et al. 2011, Waste and Biomass Valorization 2: 1–11). In this context, the main objective of the present work is to study methods of biofuel production such as Honge oil methyl ester (HOME) using a conventional transesterification process and bioethanol from the Calliandra calothyrsus shrub using a new pretreatment method known as hydrothermal explosion. Further, experimental investigations were carried out on a single-cylinder, four-stroke, direct-injection stationary diesel engine operating in a dual-fuel mode using HOME, bioethanol and producer gas combinations to determine its performance, combustion and emission characteristics. The performance of the dual-fuel engine was analyzed at optimized engine conditions. HOME-Bioethanol (BE) blends such as HOME+ 5% bioethanol (BE5), HOME+ 10% bioethanol (BE10) and HOME+ 15% bioethanol (BE15) were prepared by adding bioethanol to HOME (on volume basis) in different proportions ranging from 5 to 15% with an increment of 5%. In this present work, the effect of different BE blends on the performance of producer gas fuelled dual fuel engine was studied. Experimental investigation on dual fuel engine using BE5-Producer gas operation resulted in up to 4–9% increased brake thermal efficiency with decreased hydrocarbon (HC), carbon monoxide (CO) and marginally increased nitric oxide (NOx) emission levels compared to HOME-Producer gas, BE10-producer gas and BE15-producer gas mode of operation. However, it was observed that, the overall performance of BE-producer gas operation was found to be lower compared to diesel-producer gas operation.  相似文献   
558.
Renewable and alternative fuels have numerous advantages compared with fossil fuels, as they are renewable and biodegradable, and provide food and energy security and foreign exchange savings besides addressing environmental concerns and socio-economic issues. In this context, present work was carried out to investigate the feasibility of alternative and renewable fuels derived from biomass feedstock of different origin for engine applications. The present study was also extended to study the effect of producer gas composition derived from different biomass feedstock on the performance, combustion and emission characteristics of a single-cylinder, four-stroke, direct injection stationary diesel engine operated on a dual-fuel mode using Honge oil methyl ester (HOME) and producer gas induction. The performance of the engine was evaluated with a constant injection timing of 27° before top dead centre, an injection pressure of 205 bar for the diesel–producer gas combination and 230 bar for the HOME–producer gas combination and a compression ratio of 17.5. The results showed that the performance of the dual-fuel engine varies with the composition of the producer gas and depends on the type of biomass feedstock used in the gasifier. Experimental investigations on the dual-fuel engine showed that brake thermal efficiency values for the engine operated using HOME–producer gas derived from babul, neem and honge woods were found to be 17.2, 14.3 and 11.56% respectively, compared to 23.8% for diesel–producer gas operation at 80% load. However, the results showed better engine performance with lower exhaust emission levels for the operation of HOME–producer gas derived from the ordinary or babul wood compared with the operation of that derived from the neem and Honge woods. In view of this, present study reveals that use of alternative and renewable fuels for dual fuel engine can be considered as an immediate solution for the development of rural areas and emergency use in the event of severe diesel fuel shortage.  相似文献   
559.
The diminishing resources and continuously increasing cost of petroleum in association with their alarming pollution levels from diesel engines has led to an interest in finding alternative fuels to diesel. Emission control and engine efficiency are two of the most important parameters in current engine design. The impending introduction of emission standards such as Euro IV and Euro V has forced research towards developing new technologies for combating engine emissions. This paper examines the effects of compression ratio, swirl augmentation techniques and ethanol addition on the combustion of compressed natural gas (CNG) blended with Honge oil methyl esters (HOME) in a dual fuel engine. The present results show that the combustion of HOME and 15% ethanol blend with CNG induction in a dual-fuel engine operated in optimized parameters at an injection timing of 27° Before Top Dead Centre and a compression ratio of 17.5 resulted in acceptable combustion emissions and improved brake thermal efficiencies. The implementation of swirl augmentation techniques increased brake thermal efficiencies (BTEs) and considerably reduced combustion emissions such as smoke, HC, CO and NOx. The addition of ethanol also increased BTEs. However, at more than 15% of ethanol in HOME, NOx emissions increased dramatically.  相似文献   
560.
Greenhouse gas emissions assessments for site cleanups typically quantify emissions associated with remediation and not those from contaminant biodegradation. Yet, at petroleum spill sites, these emissions can be significant, and some remedial actions can decrease this additional component of the environmental footprint. This article demonstrates an emissions assessment for a hypothetical site, using the following technologies as examples: excavation with disposal to a landfill, light nonaqueous‐phase liquid (LNAPL) recovery with and without recovered product recycling, passive bioventing, and monitored natural attenuation (MNA). While the emissions associated with remediation for LNAPL recovery are greater than the other considered alternatives, this technology is comparable to excavation when a credit associated with product recycling is counted. Passive bioventing, a green remedial alternative, has greater remedial emissions than MNA, but unlike MNA can decrease contaminant‐related emissions by converting subsurface methane to carbon dioxide. For the presented example, passive bioventing has the lowest total emissions of all technologies considered. This illustrates the value in estimating both remediation and contaminant respiration emissions for petroleum spill sites, so that the benefit of green remedial approaches can be quantified at the remedial alternatives selection stage rather than simply as best management practices. ©2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号