首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   0篇
  国内免费   2篇
安全科学   8篇
废物处理   7篇
环保管理   15篇
综合类   19篇
基础理论   31篇
污染及防治   48篇
评价与监测   21篇
社会与环境   6篇
  2022年   6篇
  2021年   6篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   7篇
  2015年   3篇
  2014年   9篇
  2013年   13篇
  2012年   9篇
  2011年   11篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1980年   1篇
  1975年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有155条查询结果,搜索用时 49 毫秒
121.
Policies at multiple levels pronounce the need to encompass both social and ecological systems in governance and management of natural capital in terms of resources and ecosystems. One approach to knowledge production and learning about landscapes as social–ecological systems is to compare multiple case studies consisting of large spaces and places. We first review the landscape concepts’ biophysical, anthropogenic, and intangible dimensions. Second, we exemplify how the different landscape concepts can be used to derive measurable variables for different sustainability indicators. Third, we review gradients in the three dimensions of the term landscape on the European continent, and propose to use them for the stratification of multiple case studies of social–ecological systems. We stress the benefits of the landscape concepts to measure sustainability, and how this can improve collaborative learning about development toward sustainability in social–ecological systems. Finally, analyses of multiple landscapes improve the understanding of context for governance and management.  相似文献   
122.
123.
ABSTRACT: The objective of water quality/watershed management is attainment of water quality goals specified by the Clean Water Act. The Total Maximal Daily Load (TMDL) planning process is a tool to set up watershed management. However, TMDL methodologies and concepts have several problems, including determination of Loading Capacity for only low flow critical periods that preclude consideration of wet weather sources in water quality management. Research is needed to develop watershed pollutant loading and receiving waters Loading Capacity models that will link wet and dry weather pollution loads to the probability of the exceedence of water quality standards. The long term impact of traditional Best Management Practices as well as ponds and wetlands, must be reassessed to consider long term accumulation of conservative toxic compounds. Socioeconomic research should focus on providing information on economic and social feasibility of implementation of additional controls in water quality limited watersheds.  相似文献   
124.
Traditionally the coastal zone of the easternmost (Russian) part of the Gulf of Finland has not been considered as an area of active litho- and morphodynamics, but a recent study has shown that the easternmost part of the coastal zone suffers from erosion. Within some coastal segments the shoreline recession rate reaches 2 ?C 2.5?m/year. As well as determining the hydrodynamic reasons for recent erosion acceleration, important geological and geomorphic features of coastal zone which influenced the lithodynamics were established. The Kurortny District of St.Petersburg is located along the northern coast of the Gulf of Finland to the west of the St. Petersburg Flood Protection Facility. It has special importance as a unique recreation zone of the North-West of Russia. Coastal erosion is one of the most serious problems of the area. The analysis of historical materials, archive aerial photographs and modern high-resolution satellite images have shown that advancing parts of coast are almost non-existant with most sections of the coast being eroded and further retreating. Field monitoring between 2004 and 2007 showed intense damage to sandy beaches during autumn and winter storms and progressive erosion of the dunes system. Among the most important natural reasons for the erosion processes are that the coastline is open to storm waves induced by westerly and south-westerly winds, the geological structure of coastal area (easily eroded Quaternary deposits) and a sediment deficit. In some areas sediment loss was the result of the submarine coastal slope morphology (a steep slope of a narrow submarine terrace within the area of sediment drift discharge), with erosion of an alongshore submarine sandy terrace and erosion runnels at the depth 8?C12?m. The situation becomes worse due to anthropogenic impact. The southern coastal zone dynamics are also very active. According to an aerial and satellite photos analysis from 1975?C1976 to 1989?C1990, sandy beaches to the west of Lebyazhye village were eroded up to 30?m, and near Bolshaya Izora village up to 70?m. The comparison of coastine GPSsurvey with old nautical and topographic charts published in the 1980s shows the considerable change.  相似文献   
125.
Rocks eaten by wild animals on the Bolshoy Shanduyskiy kudur in the Sikhote-Alin region (Russian Federation) are zeolite–clay mineral complexes—products of weathering of zeolitized vitric tuffs of rhyolite composition, deposited in aqueous medium within the volcanic caldera of about 55 million years ago. By composition of rock-forming oxides, the tuffs refer to high-potassium calc-alkaline series. In trace elements of most favorite kudurites of the Bolshoy Shanduyskiy kudur, there are significantly increased contents of most of rare earth elements (2–5 times in comparison with surrounding rocks). The results of our analysis of geological and geochemical data on kudurs and kudurites in another part of the Sikhote-Alin, as well as on other regions of the world (particularly, in Africa and Indonesia), taking into account new data on the prevalence of rare earth elements in living matter and their medical and biological properties, enable us to consider the version of causal connection of the geophagy with rare earth elements.  相似文献   
126.
The role of natural attenuation processes in groundwater contamination by petroleum hydrocarbons is of intense scientific and practical interest. This study provides insight into the biodegradation effects in groundwater at a site contaminated by kerosene (jet fuel) in 1993 (Vitanovac, Serbia). Total petroleum hydrocarbons (TPH), hydrochemical indicators (O2, NO3?, Mn, Fe, SO42?, HCO3?), δ13C of dissolved inorganic carbon (DIC), and other parameters were measured to demonstrate biodegradation effects in groundwater at the contaminated site. Due to different biodegradation mechanisms, the zone of the lowest concentrations of electron acceptors and the zone of the highest concentrations of metabolic products of biodegradation overlap. Based on the analysis of redox-sensitive compounds in groundwater samples, redox processes ranged from strictly anoxic (methanogenesis) to oxic (oxygen reduction) within a short distance. The dependence of groundwater redox conditions on the distance from the source of contamination was observed. δ13C values of DIC ranged from ??15.83 to ??2.75‰, and the most positive values correspond to the zone under anaerobic and methanogenic conditions. Overall, results obtained provide clear evidence on the effects of natural attenuation processes—the activity of biodegradation mechanisms in field conditions.  相似文献   
127.
Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV–Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV–Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m3 and 50 μg/m3 for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).  相似文献   
128.
The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind tunnel experiments were carried out to evaluate the physical sampling performance of these two samplers in moving air conditions, which could provide information for personal biological monitoring in a moving air environment. The experiments were conducted in a small wind tunnel facility using three wind speeds (0.5, 1.0 and 2.0 m s(-1)) and three sampling orientations (0°, 90°, and 180°) with respect to the wind direction. Monodispersed particles ranging from 0.5 to 10 μm were employed as the test aerosols. The evaluation of the physical sampling performance was focused on the aspiration efficiency and capture efficiency of the two samplers. The test results showed that the orientation-averaged aspiration efficiencies of the two samplers closely agreed with the American Conference of Governmental Industrial Hygienists (ACGIH) inhalable convention within the particle sizes used in the evaluation tests, and the effect of the wind speed on the aspiration efficiency was found negligible. The capture efficiencies of these two samplers ranged from 70% to 80%. These data offer important information on the insight into the physical sampling characteristics of the two test samplers.  相似文献   
129.

The morphological, physiological, and biochemical parameters of 6-week-old seedlings of Scots pine (Pinus sylvestris L.) were studied under deficiency (1.2 nM) and chronic exposure to copper (0.32, 1, 2.5, 5, and 10 μM CuSO4) in hydroculture. The deposit of copper in the seed allowed the seedlings to develop under copper deficiency without visible disruption of growth. The high sensitivity of Scots pine to the toxic effects of copper was shown, which manifested as a significant inhibition of growth and development. The loss of dominance of the main root and a strong inhibition of lateral root development pointed to a lack of adaptive reorganization of the root system architecture under copper excess. A preferential accumulation of copper in the root and a minor translocation in aerial organs confirmed that Scots pine belongs to a group of plants that exclude copper. Selective impairment in the absorption of manganese was discovered, under both deficiency and excess of copper in the nutrient solution, which was independent of the degree of development of the root system. Following 10 μM CuSO4 exposure, the absorption of manganese and iron from the nutrient solution was completely suppressed, and the development of seedlings was secured by the stock of these micronutrients in the seed. The absence of signs of oxidative stress in the seedling organs was shown under deficiency and excess of copper, as evidenced by the steady content of malondialdehyde and 4-hydroxyalkenals. Against this background, no changes in total superoxide dismutase activity in the organs of seedlings were revealed, and the increased content of low-molecular-weight antioxidants was observed in the roots under 1 μM and in the needles under 5 μM CuSO4 exposures.

  相似文献   
130.
Integrated sediment multiproxy studies and modeling were used to reconstruct past changes in the Baltic Sea ecosystem. Results of natural changes over the past 6000 years in the Baltic Sea ecosystem suggest that forecasted climate warming might enhance environmental problems of the Baltic Sea. Integrated modeling and sediment proxy studies reveal increased sea surface temperatures and expanded seafloor anoxia (in deep basins) during earlier natural warm climate phases, such as the Medieval Climate Anomaly. Under future IPCC scenarios of global warming, there is likely no improvement of bottom water conditions in the Baltic Sea. Thus, the measures already designed to produce a healthier Baltic Sea are insufficient in the long term. The interactions between climate change and anthropogenic impacts on the Baltic Sea should be considered in management, implementation of policy strategies in the Baltic Sea environmental issues, and adaptation to future climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号