Environmental Science and Pollution Research - Recently, the burden of lung cancer (LC) has attracted global attention. Meanwhile, LC has become the leading cause of death in China. Many studies... 相似文献
Porous carbon is an excellent absorbent for pollutants in water. Here, we report a breakthrough in performance of porous carbon based on lignin prepared using sodium lignosulfonate (SLS), potassium carbonate and melamine as precursor, activator and nitrogen source, respectively. A series of characterization tests confirmed that in-situ nitrogen doping greatly enhanced porous structure, resulting in a specific surface area of 2567.9 m2 g?1 and total pore volume of 1.499 cm3 g?1, which is nearly twice that of non-nitrogen-doped porous carbon. Moreover, adsorption experiments revealed that at 303 K, the saturated adsorption capacity of chloramphenicol was as high as 713.7 mg g?1, corresponding to an improvement of 33.7%. Further, the prepared porous carbon exhibited a strong anti-interference against metal ions and humic acid. The adsorption process was confirmed to be an endothermic reaction dominated by physical adsorption, indicating that an increase in temperature is conducive to adsorption. The results of this study show that nitrogen-doped lignin-based porous carbon prepared by in-situ doping is a promising material to significantly alleviate water pollution owing to its low cost, excellent pore structure and good adsorption properties.
核电站事故造成的土壤放射性核素污染会给环境和人群造成极大的健康风险.通过批量实验,研究了不同淋洗剂对铯(Cs)污染土壤的淋洗效果及蒙脱石对其淋洗液的回收效果.结果表明:硫酸铵对土壤中Cs的淋洗效果最佳,当淋洗时间为120min、液固比为20:1时、老化140 d 土壤中Cs的去除率最大为40.0%;在未添加硫酸铵时,蒙... 相似文献
Environmental Science and Pollution Research - Biochar has been widely accepted as a soil amendment to improve nitrogen (N) use efficiency, but the effect of biochar on N transformation metabolic... 相似文献
Environmental Science and Pollution Research - In this study, corn stalk was modified by manganese (Mn) before (MBC1) and after (MBC2) pyrolysis at different temperatures (400~600 °C)... 相似文献
The levels of metals in sediments of urban river ecosystems are crucial for aquatic environmental health and pollution assessment. Yet little is known about the interaction of nutrients with metals for environmental risks under contamination accumulation. Here, we combined hierarchical cluster, correlation, and principal component analysis with structural equation model (SEM) to investigate the pollution level, source, toxicity risk, and interaction associated with metals and nutrients in the sediments of a river network in a city area of East China. The results showed that the pollution associated with metals in sediments was rated as moderate degree of contamination load and medium-high toxicity risk in the middle and downstream of urban rivers based on contamination factor, pollution load index, and environmental toxicity quotient. The concentration of mercury (Hg) and zinc (Zn) showed a significant correlation with toxic risks, which had more contribution to toxicity than other metals in the study area. Organic nitrogen and organic pollution index showed heavily polluted sediments in south of the study area. Though correlation analysis indicated that nutrients and metals had different input zones from anthropogenic sources in the urban river network, SEM suggested that nutrient accumulation indirectly intensified toxicity risk of metals by 13.6% in sediments. Therefore, we suggested the combined consideration of metal toxicity risk with nutrient accumulation, which may provide a comprehensive understanding to identify sediment pollution.