首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2336篇
  免费   48篇
  国内免费   27篇
安全科学   98篇
废物处理   94篇
环保管理   716篇
综合类   143篇
基础理论   496篇
环境理论   1篇
污染及防治   609篇
评价与监测   160篇
社会与环境   76篇
灾害及防治   18篇
  2023年   15篇
  2022年   25篇
  2021年   24篇
  2020年   25篇
  2019年   25篇
  2018年   32篇
  2017年   34篇
  2016年   48篇
  2015年   39篇
  2014年   40篇
  2013年   307篇
  2012年   77篇
  2011年   94篇
  2010年   91篇
  2009年   64篇
  2008年   102篇
  2007年   104篇
  2006年   115篇
  2005年   95篇
  2004年   64篇
  2003年   92篇
  2002年   84篇
  2001年   26篇
  2000年   37篇
  1999年   27篇
  1998年   43篇
  1997年   31篇
  1996年   32篇
  1995年   30篇
  1994年   26篇
  1993年   22篇
  1992年   27篇
  1991年   24篇
  1990年   26篇
  1989年   22篇
  1988年   28篇
  1987年   20篇
  1986年   22篇
  1985年   25篇
  1984年   42篇
  1983年   32篇
  1982年   36篇
  1981年   37篇
  1980年   26篇
  1979年   42篇
  1978年   28篇
  1977年   22篇
  1976年   19篇
  1971年   11篇
  1970年   9篇
排序方式: 共有2411条查询结果,搜索用时 15 毫秒
31.
In order to assess fully the impact of persistent organic pollutants (POPs) on human health, pollutant exchange at the interface between terrestrial plants, in particular food crops, and other environmental compartments must be thoroughly understood. In this regard, transfers of multicomponent and chiral pollutants are particularly informative. In the present study, zucchini (Cucurbita pepo L.) was planted in containerized, uncontaminated soil under both greenhouse and field conditions and exposed to air-borne chlordane contamination at 14.0 and 0.20 ng/m(3) (average, greenhouses), and 2.2 ng/m(3) (average, field). Chiral gas chromatography interfaced to an ion trap mass spectrometer was used to determine the chiral (trans-chlordane, TC, and cis-chlordane, CC) and achiral (trans-nonachlor, TN) chlordane components in vegetation, air, and soil compartments. The chlordane components of interest were detected in all vegetation tissues examined--root, stem, leaves, and fruits. When compared with the data from a soil-to-plant uptake study, the compositional profile of the chlordane components, i.e. the component fractions of TC, CC, and TN, in plant tissues, showed significantly different patterns between the air-to-plant and soil-to-plant pathways. Changes in the enantiomer fractions of TC and CC in plant tissues relative to the source, i.e. air or soil, although observed, were not markedly different between the two routes. This report provides the first comprehensive comparison between two distinct plant uptake routes for POPs and their subsequent translocation within plant tissues.  相似文献   
32.
Fish may bioaccumulate contaminants from the aquatic environment and extend them to the food chain provoking risks to human health. This study evaluated the microbiological parameters of the pond´s water and trace elements concentrations in samples of water, sediment, feed and muscle of farmed Nile tilapia used for human consumption in southern Brazil. A total of 240 fish were collected from 12 tilapia farms. Sediment, tank water and dry ration used in the animals' diet were collected for analysis. Analysis were performed by Energy Dispersion X-ray Fluorescence (EDXRF), Inductively Coupled Plasma Mass Spectrometer (ICP-MS), Induced Coupled Plasma Optical Emission Spectrometer (ICP-OES), and Atomic Absorption Spectrometer (AAS-VGA). In addition, the microbiological analysis of the water was carried out. The concentrations of Se, I, Fe, Cu and Zn in fish muscle were higher than the recommended by the Brazilian legislation, considering the advised daily intake for adults. The arsenic element had concentrations above the limit stipulated by the present Brazilian legislation, observed in all samples of muscle, sediment and tank water highlighting a possible environmental and fish contamination by the toxic element. Moreover, the arsenic concentration in the water presented a positive correlation (ρ?=?0.33) with arsenic in the muscle, suggesting that tilapia is a good environmental bioindicator, once they properly reflect the levels of arsenic in the water. It is suggested to perform an arsenic speciation for quantification of the inorganic form and accurate assessment of the degree of toxicity in the muscle samples and risks it can bring to human health. Regarding the other potentially toxic elements (Hg, Pb and Cd), and microbiological analysis of water it was verified that the consumption of the fish in question does not raise risks, since the values are within a quality benchmark established by law. The concentration of total and fecal coliforms in pond´s water in the facilities was in agreement with the microbiological indexes required by the legislation of CONAMA class II. Western region presented the lowest concentrations of fecal coliforms when compared to the other regions. There was no significant difference in the microbiological counts of total heterotrophic bacteria, Vibrio spp. and Pseudomonas spp. among the regions.  相似文献   
33.
Particulate matter mass (PM), trace gaseous pollutants, and select volatile organic compounds (VOCs) with meteorological variables were measured in Logan, Utah (Cache Valley), for >4 weeks during winter 2017 as part of the Utah Winter Fine Particle Study (UWFPS). Higher PM levels for short time periods and lower ozone (O3) levels were present due to meteorological and mountain valley conditions. Nitrogenous pollutants were relatively strongly correlated with PM variables. Diurnal cycles of NOx, O3, and fine PM(PM 2.5) (aerodynamic diameter <2.5 μm [PM2.5]) suggested formation from NOx. O3 levels increased from early morning into midafternoon, and NOx and PM2.5 increased throughout the morning, followed by sharp decreases. Toluene/benzene and xylenes/benzene ratios and VOC correlations with nitrogenous and PM species were indicative of local traffic sources. Wind sector comparisons suggested that pollutant levels were lower when winds were from nearby mountains to the east versus winds from northerly or southerly origins.

Implications: The Cache Valley in Idaho and Utah has been designated a PM2.5 nonattainment area that has been attributed to air pollution buildup during winter stagnation events. To inform state implementation plans for PM2.5 in Cache Valley and other PM2.5 nonattainment areas in Utah, a state and multiagency federal research effort known as the UWFPS was conducted in winter 2017. As part of the UWFPS, the U.S. Environmental Protection Agency (EPA) measured ground-based PM species and their precursors, VOCs, and meteorology in Logan, Utah. Results reported here from the EPA study in Logan provide additional understanding of wintertime air pollution conditions and possible sources of PM and gaseous pollutants as well as being useful for future PM control strategies in this area.  相似文献   

34.
This study tested the hypothesis that exposure to mixtures containing fine particles and ozone (O3) would cause pulmonary injury and decrements in functions of immunological cells in exposed rats (22-24 months old) in a dose-dependent manner. Rats were exposed to high and low concentrations of ammonium bisulfate and elemental carbon and to 0.2 ppm O3. Control groups were exposed to purified air or O3 alone. The biological end points measured included histopathological markers of lung injury, bronchoalveolar lung fluid proteins, and measures of the function of the lung's innate immunological defenses (macrophage antigen-directed phagocytosis and respiratory burst activity). Exposure to O3 alone at 0.2 ppm did not result in significant changes in any of the measured end points. Exposures to the particle mixtures plus O3 produced statistically significant changes consistent with adverse effects. The low-concentration mixture produced effects that were statistically significant compared to purified air but, with the exception of macrophage Fc receptor binding, exposure to the high-concentration mixture did not. The effects of the low- and high-concentration mixtures were not significantly different. The study supports previous work that indicated that particle + O3 mixtures were more toxic than O3 alone.  相似文献   
35.
36.
Tracking chlordane compositional and chiral profiles in soil and vegetation   总被引:4,自引:0,他引:4  
The cycling of chlordane and other persistent organic pollutants through the environment must be comprehensively elucidated to assess adequately the human health risks posed from such contaminants. In this study the compositional and chiral profiles of weathered chlordane residues in the soil and vegetative compartments were investigated in order to provide details of the fate and transport of this persistent pesticide. Zucchini was planted in a greenhouse in three bays containing chlordane-contaminated soil. At harvest the vegetation and soil were extracted and analyzed for chlordane content using chiral gas chromatography/ion trap mass spectrometry. Both achiral and chiral chlordane components were quantified. The chlordane concentration in the rhizosphere (soil attached to roots) was significantly less than that in the bulk soil. However, the enantiomeric ratio of the chiral components and overall component ratios had changed little in the rhizosphere relative to the bulk soil. Significant levels of chlordane were detected in the vegetation, the amount varying in different plant tissues from a maximum in roots to a minimum in fruit. In addition to the chlordane concentration gradient in plant tissues, significant shifts in compositional profile, as indicated by the component ratios, and in chiral profile, as indicated by the enantiomeric ratio, of the contaminant were observed in the plant tissues. The data indicate that abiotic processes dominate the transport of the chlordane components through the soil to the plant. This is the first report of the effect of rapid biotic processes within the plant compartment on chlordane compositional and chiral profiles.  相似文献   
37.
Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 microm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7-2.2 ppm, 3.4-10.0 microg/m3, 1.3-2.0 x 10(5)/cm3, and 30.2-64.6 microg/m3, respectively. For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6-220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 x 10(5)/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.  相似文献   
38.
The United States Environmental Protection Agency (USEPA) has pursued the estimation of risk of adverse health effects from exposure to chemical mixtures since the early 1980s. Methods used to calculate risk estimates of mixtures were often based on single chemical information that required assumptions of dose-addition or response-addition and did not consider possible changes in response due to interaction effects among chemicals. Full factorial designs for laboratory studies can produce interactions information, but these are expensive to perform and may not provide the information needed to evaluate specific environmentally relevant mixtures. In this research, groups of Japanese medaka (Oryzias latipes) embryos were exposed to binary mixtures of benzene and toluene as well as to each of these chemicals alone. Endpoint specific dose-response models were built for the hydrocarbon mixture under an assumption of dose-additivity, using the single chemical dose-response information on benzene and toluene. The endpoints included heart rate, heart rate progression, and lethality. Results included a synergistic response for heart rate at 72 h of development, and either additivity or antagonism for all other endpoints at 96 h of development. This work uses an established statistical method to evaluate the toxicity of an environmentally relevant mixture to ascertain whether interaction effects are occurring, thus providing additional information on toxicity.  相似文献   
39.
The paper describes the results of a study of the impact of the National Energy on the trend towards increased utilization of coal and lignite in Texas with forecasts of increased coal and lignite utilization for the electric utility and industrial sectors. Environmental impacts of this increased coal and lignite use are projected in terms of increased air pollutant emissions and air quality impacts. Economic costs of compliance with alternative source emission regulations are also projected for the electric utility industry.Lignite consumption in Texas under the National Energy Plan is projected to increase from the present 13 million metric tons in 1976 to 57 million metric tons annually by 1985. Sub-bituminous coal consumption in Texas is projected to increase from 1 million metric per year in 1976 to 49 million metric tons per year in 1985. Bituminous coal consumption in Texas is expected to increase from less than one million metric tons per year in 1976 to about 3 million metric tons per year in 1985.Major increases in sulfur oxides emissions from coal and lignite combustion in Texas can be expected by 1985 of up to 1.5 × 109 kg per year without controls and 0.2 × 109 kg per year with controls. Increases in acid precipitation formation will result in north-east Texas from extensive lignite usage for electric power generation as a detriment to agriculture. The photochemical air pollution problem in the Houston area will probably worsen primarily because of increased nitrogen oxides and sulfur oxides emissions because of industrial coal combustion. Capital costs of air pollution controls in Texas for coal-fired utility boilers are estimated as up to U.S. $3.9 billion by 1985, with total operating costs of up to U.S. $1.2 billion per year.  相似文献   
40.
The reasons for developing quantitative estimates of uncertainty in environmental risk assessments are discussed along with a method for developing them which involves scientific judgement. In the situation considered here the regulatory needs are ahead of the science, which makes the development of the estimates on uncertainty more difficult, but not impossible. Quantitative estimates for all uncertainties involved in the estimation of risk resulting from exposure to volatile organic compounds (VOCs) in drinking water are developed and tabulated. By far the largest contribution to the uncertainty in the risk estimates for VOCs in drinking water are due to uncertainty in the extrapolation of the dose-response curve to low levels. The uncertainty due to extrapolation is on the order of 104 and 106. Other components of the analysis may contribute uncertainties of a few orders of magnitude. In general the largest uncertainties are in the toxicological data base and the manipulation of it needed to estimate risk. The data base and manipulations needed to estimate exposure due to VOCs in drinking water were at the more an order to magnitudes in uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号