首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1345篇
  免费   226篇
  国内免费   509篇
安全科学   191篇
废物处理   34篇
环保管理   135篇
综合类   1120篇
基础理论   195篇
污染及防治   135篇
评价与监测   116篇
社会与环境   99篇
灾害及防治   55篇
  2024年   11篇
  2023年   49篇
  2022年   110篇
  2021年   110篇
  2020年   132篇
  2019年   81篇
  2018年   74篇
  2017年   98篇
  2016年   80篇
  2015年   78篇
  2014年   109篇
  2013年   103篇
  2012年   130篇
  2011年   122篇
  2010年   108篇
  2009年   103篇
  2008年   97篇
  2007年   104篇
  2006年   107篇
  2005年   62篇
  2004年   54篇
  2003年   39篇
  2002年   31篇
  2001年   31篇
  2000年   24篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
排序方式: 共有2080条查询结果,搜索用时 15 毫秒
991.
为预防压力管道泄漏或者恶性爆管事故的发生,采用光纤Bragg光栅传感器对压力管道薄弱部位进行表面应变监测,实现对压力管道爆管事故的安全监控。采用一段定制加工的实验压力管道,首先采用ANSYS 软件对压力管道进行了应变建模和有限元分析,得到压力管道的 L 型、U 型和 T 型接头等薄弱部位的应力分布,然后在应力集中区贴装光纤 Bragg 光栅传感器,对表面应变进行实时测试,测试结果经过应变传递误差修正之后,与理论值和电阻应变片结果进行比对,证实了光纤 Bragg 光栅传感器对压力管道薄弱部位安全监测的可行性。  相似文献   
992.
以厌氧发酵污泥为阳极底物、Cr(VI)为阴极电子受体构建双室微生物燃料电池(MFC),考察厌氧发酵污泥MFC系统处理含铬废水的性能及机理,并与原污泥MFC系统进行比较.发酵污泥MFC系统的开路电压为1.05V,最大功率密度为5722mW/m3,比原污泥MFC系统提高了57.8%.发酵污泥MFC系统的表观内阻为119.1Ω,比原污泥MFC系统降低了8.5%.发酵污泥MFC系统对Cr(VI)的去除符合一级动力学模型,速率常数为0.0514h-1,比原污泥MFC系统提高了36.7%.污泥经厌氧发酵后可溶性有机物浓度增加,产生了大量短链脂肪酸,它们是产电微生物易于摄取的阳极底物,因而提高了MFC系统的产电性能及Cr(VI)去除效果.  相似文献   
993.
A sampling campaign including summer, autumn and winter of 2014 and spring of 2015 was accomplished to obtain the characteristic of chemical components in PM2.5 at three sites of Kunming, a plateau city in South-west China. Nine kinds of water-soluble inorganic ions (WSI), organic and element carbon (OC and EC) in PM2.5 were analyzed by ion chromatography and thermal optical reflectance method, respectively. Results showed that the average concentrations of total WSI, OC and EC were 22.85±10.95 µg·m-3, 17.83±9.57 µg·m-3 and 5.11±4.29 µg·m-3, respectively. They totally accounted for 53.0% of PM2.5. Secondary organic and inorganic aerosols (SOA and SIA) were also assessed by the minimum ratio of OC/EC, nitrogen and sulfur oxidation ratios. The annual average concentrations of SOA and SIA totally accounted for 28.3% of the PM2.5 concentration. The low proportion suggested the primary emission was the main source of PM2.5 in Kunming. However, secondary pollution in the plateau city should also not be ignorable, due to the appropriate temperature and strong solar radiation, which can promote the atmospheric photochemical reactions.
  相似文献   
994.
采用Unified bioaccessibility model (UBM) 模拟胃肠消化的方法测试了来自湖南、广西和大连12个污染土壤样品中Cd的人体可给性.结果显示,Cd在胃提取阶段的可给性为12.24%~81.10%,平均值为53.60%,肠提取阶段的可给性为2.01%~43.30%,平均值为19.74%.胃提取阶段的可给性浓度仅与总镉(TCd) (P<0.000, n=12)和总锰(TMn) (P=0.04, n=12)显著正相关,肠提取阶段的可给性浓度与TCd (P<0.001, n=12)、胃阶段Cd的可给性浓度(P<0.001, n=12)以及TMn(P=0.05, n=12)均显著正相关.胃阶段基于土壤中TCd和TP含量能较好的预测Cd在胃阶段的可给性浓度,模型决定系数(R2)达到0.992,肠阶段基于Cd在胃阶段的可给性浓度及土壤pH值能较好的预测其在肠阶段的可给性浓度,R2达到0.999.考虑土壤中Cd在胃中的可给性时,居住及工商业情形下土壤筛选值分别提升至未考虑可给性时的1.8倍(以可给性平均值计算)和1.2倍(以可给性最大值计算).考虑土壤中Cd在肠阶段的可给性时,居住及工商业情形下土壤筛选值分别提升至未考虑可给性时的5.0倍(以可给性平均值计算)和2.3倍(以可给性最大值计算).  相似文献   
995.
采用UBM(unified bioaccessibility model)模拟胃肠消化的方法测试了来自湖南省、广西壮族自治区和大连市的13个不同理化参数污染土壤中As的人体可给性,分析了考虑As人体可给性对风险评估结果的影响. 结果表明:①供试土壤样品模拟胃提取阶段As的人体可给性因子为3.9%~49.5%,平均值为19.6%;模拟肠提取阶段的人体可给性因子为1.2%~10.8%,平均值为6.0%,前者是后者的1.2~9.1倍. ②影响供试土壤样品胃提取阶段As人体可给性浓度的最显著性因素是w(TAs)(R2=0.94,P<0.01,n=13),其次为w(TP)(R2=0.82,P<0.01,n=13)和w(TMn)(R2=0.79,P<0.01,n=13);影响肠提取阶段As人体可给性浓度的显著因素依次为土壤w(TAs)(R2=0.83,P<0.01,n=13)、w(TP)(R2=0.80,P<0.01,n=13)、胃提取阶段As的人体可给性浓度(R2=0.76,P<0.01,n=13)、pH(R2=0.74,P<0.01,n=13)、w(TMn)(R2=0.65,P<0.02,n=13)以及w(TOM)(TOM为有机质)(R2=0.59,P<0.04,n=13). ③基于土壤w(TAs)和w(黏粒)构建的模型能较好地预测As在胃提取阶段的人体可给性浓度,预测值与实测值的R2达到0.97,ME(平均误差)、RMSE(均方根误差)、rp2(可决系数)分别为0.02、0.17、0.95;仅基于土壤w(TAs)构建的模型能较好地预测As在肠提取阶段的人体可给性浓度,R2达到0.90,ME、RMSE、rp2分别为-0.03、0.26、0.80. ④以供试土壤样品中w(TAs)为暴露浓度计算的健康风险分别是考虑As在胃及肠提取阶段人体可给性因子的2.0~15.0和7.3~81.0倍. 可见,基于土壤w(TAs)所制定的风险管理对策可能过于保守.   相似文献   
996.
粤桂琼区域水源地有机磷农药的生态风险评价   总被引:2,自引:0,他引:2       下载免费PDF全文
利用气相色谱-质谱检测粤桂琼(广东、广西、海南三省区)区域水源地9个采样点水样中的有机磷农药浓度,构建了淡水生物对有机磷农药的物种敏感性分布,并计算出各类水生生物的HC5(hazardous concentration for 5% the species)值;采用基于浓度加和模型的混合物风险商值法和商值概率分布法,评价了粤桂琼区域水源地中敌敌畏、内吸磷、阿特拉津、甲基对硫磷、乐果、马拉硫磷和对硫磷7种有机磷农药的的生态风险,同时利用聚类分析法对9个采样点进行了生态风险评价. 结果表明:粤桂琼区域水源地7种有机磷农药的总质量浓度在nd~1 260.95 ng/L之间,平均值为184.68 ng/L,主要以马拉硫磷、甲基对硫磷、对硫磷和乐果为主. 东莞东江南支流、玉林苏烟水库和柳州柳江水源地的生态风险级别相对较高. 敌敌畏、对硫磷、甲基对硫磷的HC5值均低于0.1 μg/L,这3种物质对生态系统毒性效应较大. 根据风险商结果排序可知,粤桂琼区域水源地预防的重点为甲基对硫磷、对硫磷和马拉硫磷对水生生物的危害,其中甲基对硫磷是对混合风险商贡献最高的污染物,其危害指数达21.313;在95%的置信区间内,甲基对硫磷、对硫磷和马拉硫磷的生态风险较大,风险商超过1的概率为5%,应作为最优先控制的污染物.   相似文献   
997.
以某焦化类大型污染场地苯污染土壤为例,针对S1(单一用地)、S2(多种用地)、S3(考虑建筑设计)3种暴露情景,分析不同情景下场地土壤中苯污染的暴露途径并进行健康风险评估. S1情景下的苯致癌风险为9.2×10-5. 在S2情景下,规划的5个分区中仅E区(居住用地)苯的致癌风险(4.3×10-4)高于可接受水平(1.0×10-6), 考虑到各功能区累积致癌风险,则E区高污染可导致其他4个功能区〔A区(商业用地)、B区(城市绿地)、C区(居住用地)、D区(商业用地)〕的累积致癌风险(分别为6.5×10-6、2.2×10-6、7.3×10-6、2.2×10-5)均高于可接受水平,表明单一用地会低估污染物聚集区的风险. 在S3情景下,A、B、C区土壤中苯的致癌风险(分别为1.2×10-7、2.7×10-7、2.5×10-7)均未超过可接受致癌风险水平;D区由于污染土壤被完全清除,不存在健康风险;E区开发后由剩余土壤产生的苯致癌风险为2.7×10-5,D区受E区影响产生的累积致癌风险(1.5×10-6)高于可接受水平. 进一步分析表明,场地的用地规划与建筑设计等因素将影响风险评估中关键参数(包括污染源浓度、水文地质参数、暴露参数、受体参数等)的取值,从而影响风险评估结果;此外,各功能区之间的风险影响也不容忽视. 对于大型污染场地,结合用地规划进行暴露情景分析与风险评估更为科学合理.   相似文献   
998.
为建立科学、合理的化工园区应急避难点,通过对园区企业、园区空间布局等方面调研分析,从安全性、可达性、适宜性3个方面构建化工园区应急避难点选址评估指标体系;结合AHP和熵值法的组合赋权法,对指标权重进行赋权,并基于博弈论思想对权重实现差异最小化处理,计算出各指标贡献率;将模型应用于广东省某化工园区避难所的选址问题,并对该化工园区应急避难点选址进行综合评估,提出针对性的园区避难点选址措施。  相似文献   
999.
为降低水泥行业碳减排成本,确定最优碳减排技术路径,研究基于经济-能源模型,核算中国水泥行业最新碳减排技术的边际减排成本,使用情景分析方法,研究了与未实施减排技术相比,2020年17项技术的碳减排潜力,并将其作为基准情景,和2025,2030,2035年3个未来情景的碳减排潜力作比较,从而得出不同情景下的边际减排成本曲线。结果表明:1)2020年我国水泥行业17项减排技术的平均减排成本为124元/tCO2,2020年实现总减排量3043万t,总减排成本为10.3亿元;在保持技术水平和排放水平不变的情况下,2035年17项减排技术可实现总减排量21307万t,总减排成本为103.4亿元。2)在各项减排技术中,集成模块化窑衬节能技术与水泥熟料烧成系统优化技术,具有较高减排潜力和较低减排成本,适合广泛推广;CO2捕集利用与封存(CCUS)技术虽具有较高减排成本,但是未来减排潜力较大,应给予重视。3)技术普及率与熟料产量是决定减排潜力的重要因素,因此未来水泥行业应注重节能减排政策技术推广与产业结构调整,可进一步实现减排目标。  相似文献   
1000.
石化和化工行业是我国经济发展的支柱性产业,但同时也是高耗能、高排放行业。平衡石化和化工行业发展与碳达峰、碳中和之间的关系,制定科学、合理的减排措施,是实现石化和化工行业低碳绿色发展的重要措施。为此,研究围绕石化和化工重点行业,利用专家型和基于模型的边际成本曲线对我国石化和化工行业的关键减排技术及减排成本进行分析。研究结果显示,我国石化和化工行业平均减排成本为298元/tCO2,2035年累积碳减排量为4.4亿t,约占行业碳排放总量的30%。与节能减排措施相比,能源替代手段具有较高的减排成本,但也同时具有较高的减排潜力。2035年,能源替代的减排潜力占到总减排潜力的62%。未来,应着力推动传统煤化工行业能源利用向可再生、清洁能源的转变,助推石化和化工行业碳达峰、碳中和目标的实现。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号