首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19858篇
  免费   998篇
  国内免费   6922篇
安全科学   1380篇
废物处理   1160篇
环保管理   1567篇
综合类   11269篇
基础理论   3334篇
环境理论   3篇
污染及防治   6425篇
评价与监测   876篇
社会与环境   989篇
灾害及防治   775篇
  2024年   30篇
  2023年   323篇
  2022年   980篇
  2021年   840篇
  2020年   723篇
  2019年   665篇
  2018年   762篇
  2017年   932篇
  2016年   949篇
  2015年   1165篇
  2014年   1519篇
  2013年   2049篇
  2012年   1663篇
  2011年   1736篇
  2010年   1291篇
  2009年   1273篇
  2008年   1366篇
  2007年   1170篇
  2006年   1108篇
  2005年   790篇
  2004年   584篇
  2003年   716篇
  2002年   643篇
  2001年   549篇
  2000年   582篇
  1999年   558篇
  1998年   498篇
  1997年   413篇
  1996年   399篇
  1995年   324篇
  1994年   279篇
  1993年   227篇
  1992年   184篇
  1991年   106篇
  1990年   82篇
  1989年   62篇
  1988年   59篇
  1987年   30篇
  1986年   29篇
  1985年   14篇
  1984年   18篇
  1983年   20篇
  1982年   19篇
  1981年   14篇
  1979年   3篇
  1978年   9篇
  1975年   5篇
  1974年   3篇
  1972年   4篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
711.
We developed the T3-induced Xenopus metamorphosis assay, which is supposed to be able to sensitively detect thyroid hormone(TH) signaling disruption of chemicals. The present study aimed to validate the T3-induced Xenopus metamorphosis assay by re-evaluating the TH signaling antagonism of tetrabromobisphenol A(TBBPA), a known TH signaling disruptor. According to the assay we developed, Xenopus tadpoles at stage 52 were exposed to 10–500 nmol/L TBBPA in the presence of 1 nmol/L T3. After 96 hr of exposure, TBBPA in the range of 10–500 nmol/L was found to significantly inhibit T3-induced morphological changes of Xenopus tadpoles in a concentration-dependent manner in term of body weight and four morphological endpoints including head area(HA), mouth width(MW), unilateral brain width/brain length(ULBW/BL), and hind-limb length/snout-vent length(HLL/SVL).The results show that these endpoints we developed are sensitive for characterizing the antagonistic effects of TBBPA on T3-induced metamorphosis. Following a 24-hr exposure,we found that TBBPA antagonized expression of T3-induced TH-response genes in the tail,which is consistent with previous findings in the intestine. We propose that the tail can be used as an alternative tissue to the intestine for examining molecular endpoints for evaluating TH signaling disruption. In conclusion, our results demonstrate that the T3-induced Xenopus metamorphosis assay we developed is an ideal in vivo assay for detecting TH signaling disruption.  相似文献   
712.
Microbial Fuel Cells(MFCs) are a promising technology for treating wastewater in a sustainable manner. In potential applications, low temperatures substantially reduce MFC performance. To better understand the effect of temperature and particularly how bioanodes respond to changes in temperature, we investigated the current generation of mixed-culture and pure-culture MFCs at two low temperatures, 10°C and 5°C. The results implied that the mixed-culture MFC sustainably performed better than the pure-culture(Shewanella) MFC at 10°C, but the electrogenic activity of anodic bacteria was substantially reduced at the lower temperature of 5°C. At 10°C, the maximum output voltage generated with the mixed-culture was 540–560 m V, which was 10%–15% higher than that of Shewanella MFCs. The maximum power density reached 465.3 ± 5.8 m W/m~2 for the mixed-culture at10°C, while only 68.7 ± 3.7 m W/m~2 was achieved with the pure-culture. It was shown that the anodic biofilm of the mixed-culture MFC had a lower overpotential and resistance than the pure-culture MFC. Phylogenetic analysis disclosed the prevalence of Geobacter and Pseudomonas rather than Shewanella in the mixed-culture anodic biofilm, which mitigated the increase of resistance or overpotential at low temperatures.  相似文献   
713.
Atrazine, a widely used herbicide, is increasing the agricultural production effectively, while also causing great environmental concern. Efficient atrazine-degrading bacterium is necessary to removal atrazine rapidly to keep a safe environment. In the present study, a new atrazine-degrading strain ZXY-1, identified as Pseudomonas, was isolated. This new isolated strain has a strong ability to biodegrade atrazine with a high efficiency of 9.09 mg/L/hr.Temperature, p H, inoculum size and initial atrazine concentration were examined to further optimize the degradation of atrazine, and the synthetic effect of these factors were investigated by the response surface methodology. With a high quadratic polynomial mathematical model(R~2= 0.9821) being obtained, the highest biodegradation efficiency of 19.03 mg/L/hr was reached compared to previous reports under the optimal conditions(30.71°C, pH 7.14, 4.23%(V/V) inoculum size and 157.1 mg/L initial atrazine concentration).Overall, this study provided an efficient bacterium and approach that could be potentially useful for the bioremediation of wastewater containing atrazine.  相似文献   
714.
The chemical oxygen demand (COD) and NH3-N removal, membrane fouling, sludge characteristics and microbial community structure in a membrane bioreactor (MBR) coupled with worm reactors (SSBWR) were evaluated for 210 days. The obtained results were compared to those from a conventional MBR (C-MBR) operated in parallel. The results indicated that the combined MBR (S-MBR) achieved higher COD and NH3-N removal efficiency, slower increase in membrane fouling, better sludge settleability and higher activities of the related enzymes in the activated sludge. Denaturing gradient gel electrophoresis was used to analyze the microbial community structures in the C-MBR and the S-MBR. The microbial community structure in the S-MBR was more diverse than that in the C-MBR. Additionally, the slow-growing microbes such as Saprospiraceae, Actinomyces, Frankia, Clostridium, Comamonas, Pseudomonas, Dechloromonas and Flavobacterium were enriched in the S-MBR, further accounting for the sludge reduction, membrane fouling alleviation and wastewater treatment.  相似文献   
715.
Pyridine, an important chemical raw material, is widely used in industry, for example in textiles,leather, printing, dyeing, etc. In this research, a dielectric barrier discharge(DBD) system was developed to remove pyridine, as a representative type of nitrogen heterocyclic compound in drinking water. First, the influence of the active species inhibitors tertiary butanol alcohol(TBA),HCO_3~-, and CO_3~(2-)on the degradation rate of pyridine was investigated to verify the existence of active species produced by the strong ionization discharge in the system. The intermediate and final products generated in the degradation process of pyridine were confirmed and analyzed through a series of analytical techniques, including liquid chromatography–mass spectrometry(LC–MS), high performance liquid chromatography(HPLC), ion chromatography(IC), total organic carbon(TOC) analysis, ultraviolet(UV) spectroscopy, etc. The results showed that the degradation of pyridine was mainly due to the strong oxidizing power of ozone and hydroxyl radical produced by the DBD system. Several intermediate products including 3-hydroxyl pyridine, fumaric acid, 2, 3-dihydroxypyridine, and oxalic acid were detected. Nitrogen was removed from the pyridine molecule to form nitrate. Through analysis of the degradation mechanism of pyridine, the oxidation pathway was deduced. The study provided a theoretical and experimental basis for the application of DBD strong ionization discharge in treatment of nitrogen heterocyclic compounds in drinking water.  相似文献   
716.
Engineered oxide nanoparticles (NPs) are widely applied in insulators, catalyzers, paints, cosmetic products, textiles and semiconductors. Their attachment on cell membrane may lead to cytotoxicity. The effects of Al2O3, Fe2O3, SiO2, TiO2 and ZnO NPs on membrane integrity and fluidity were studied using giant or small unilamellar vesicles in this study. Al2O3 and SiO2 NPs disrupted the oppositely charged membrane, indicating the important role of electrostatic attraction. However, Fe2O3, TiO2 and ZnO NPs did not cause serious membrane disruption as Al2O3 and SiO2 NPs. Membrane fluidity was evaluated by the generalized polarity (GP) values of Laurdan fluorescent emission. SiO2 NPs induce the membrane gelation of both positively and negatively charged membrane. Al2O3 and ZnO NPs induced the gelation of the oppositely charged membrane, but did not cause obvious membrane gelation to the like charged membrane. The phospholipid molecular structural changes after NP exposure were analyzed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR spectra revealed the hydrogen bond formation between NPs and the carbonyl/phosphate groups of phospholipids. Al2O3 and SiO2 NPs showed strongest evidence of hydrogen bonding on their FT-IR spectra. It was consistent with the microscopic observation and fluorescent data that Al2O3 and SiO2 NPs caused more serious membrane disruption and gelation. This study on membrane damage provides further knowledge on the cytotoxicity of nanomaterials and the safety of NP application.  相似文献   
717.
Soil acidification caused by acid deposition has been significant in some forests in southern China. We present an approach for assessing the current stage maximum allowed load (SML) of acid deposition for terrestrial system in the country. The main idea was that soil base cation exchange as a finite buffer to acidity was included in the soil acidity mass balance calculation at current acidification stage. We calculated the SML for five forests in southern China. The usual critical loads for the same forests were also calculated by the steady state mass balance model for comparison. The results showed that the SML is a more tolerant limit than the critical load for the forests with soils not acidified seriously at current stage. However, the SML become a more stringent limit to acid deposition when the forest soils have acidified seriously to very low base cation saturation. In this case the SML assessment is beneficial for the soils recovering from a serious acidified state. Based on a national scale database, the SML mapping for non-agricultural soil system in China was carried out.  相似文献   
718.
N-nitrosodimethylamine(NDMA) precursors consist of a positively charged dimethylamine group and a non-polar moiety, which inspired us to develop a targeted cation exchange technology to remove NDMA precursors. In this study, we tested the removal of two representative NDMA precursors, dimethylamine(DMA) and ranitidine(RNTD), by strong acidic cation exchange resin. The results showed that pH greatly affected the exchange efficiency, with high removal(DMA 78% and RNTD 94%) observed at pH pk_a-1 when the molar ratio of exchange capacity to precursor was 4. The exchange order was obtained as follows: Ca~(2+) Mg~(2+) RNTD~+ K~+ DMA~+ NH_4~+ Na~+. The partition coefficient of DMA~+to Na~+was 1.41 ± 0.26, while that of RNTD~+to Na~+was 12.1 ± 1.9. The pseudo second-order equation fitted the cation exchange kinetics well. Bivalent inorganic cations such as Ca~(2+)were found to have a notable effect on NA precursor removal in softening column test. Besides DMA and RNTD, cation exchange process also worked well for removing other 7 model NDMA precursors. Overall, NDMA precursor removal can be an added benefit of making use of cation exchange water softening processes.  相似文献   
719.
为了保证海水中铁元素含量的检测质量,更好地深入了解铁在整个海水体系的生物地球化学中扮演的角色,需科学地评定检测结果的分散性。文章依据《测量不确定度的评定与表示》(JJF1059-1999)的理论,以浙江近海海水为例,评定原子吸收法测定海水中铁含量的不确定度。测得浙江近海样品中铁的浓度为5.2μg/L,扩展不确定度U=0.8μg/L(k=2)。通过对各不确定度分量进行评定发现,利用该方法测定海水中铁含量时,对其合成标准不确定度的主要贡献来自于样品制备过程,尤其是萃取过程。  相似文献   
720.
王蕊 《环境保护科学》2017,43(1):114-118
以辽河三角洲地区为例,利用修正的生态服务价值当量因子表结合服务价值评估方法,分析了3个时期土地利用格局时空动态变化特征及其服务价值变化状况。结果表明:研究区土地利用以水田为主,占56.76%,其次为湿地和建设用地,分别占15.29%和14.77%,3种土地利用类型占总面积的86.82%;1986~2000年土地利用格局变化较大,而2000~2010年土地利用格局变化程度较小,两个时段内建设用地面积都稳步增加,湿地面积均逐渐下降;研究区土地利用服务的总价值逐年减少,湿地服务价值对总服务价值的贡献度最大,占总服务价值的60%以上。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号