首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1141篇
  免费   72篇
  国内免费   338篇
安全科学   102篇
废物处理   45篇
环保管理   100篇
综合类   670篇
基础理论   199篇
污染及防治   264篇
评价与监测   60篇
社会与环境   56篇
灾害及防治   55篇
  2024年   3篇
  2023年   19篇
  2022年   61篇
  2021年   47篇
  2020年   35篇
  2019年   28篇
  2018年   49篇
  2017年   39篇
  2016年   38篇
  2015年   47篇
  2014年   72篇
  2013年   92篇
  2012年   66篇
  2011年   85篇
  2010年   75篇
  2009年   71篇
  2008年   75篇
  2007年   48篇
  2006年   70篇
  2005年   53篇
  2004年   35篇
  2003年   56篇
  2002年   68篇
  2001年   63篇
  2000年   35篇
  1999年   38篇
  1998年   52篇
  1997年   29篇
  1996年   26篇
  1995年   14篇
  1994年   23篇
  1993年   14篇
  1992年   11篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1983年   2篇
排序方式: 共有1551条查询结果,搜索用时 234 毫秒
941.
• The sampling was conducted in city on the Yunnan-Guizhou Plateau for one year. • The groups of PAHs revealed their different environmental fates and migration paths. • Seasonal biomass burning could affect the concentration by long-distance transport. • Industrial sources and traffic emissions were the main contributor of PAHs. • Living in industrial areas or winter had higher health risk by exposure PAHs in PM2.5. Monthly particle-phase ambient samples collected at six sampling locations in Yuxi, a high-altitude city on the edge of Southeast Asia, were measured for particle-associated PAHs. As trace substances, polycyclic aromatic hydrocarbons (PAHs) are susceptible to the influences of meteorological conditions, emissions, and gas-particulate partitioning and it is challenging job to precise quantify the source and define the transmission path. The daily concentrations of total PM2.5-bound PAHs ranged from 0.65 to 80.76 ng/m3, with an annual mean of 11.94 ng/m3. Here, we found that the concentration of PM2.5-bound PAHs in winter was significantly higher than that in summer, which was mainly due to source and meteorology influence. The increase of fossil combustion and biomass burning in cold season became the main contributors of PAHs, while precipitation and low temperature exacerbated this difference. According to the concentration variation trend of PM2.5-bound PAHs and their relationship with meteorological conditions, a new grouping of PAHs is applied, which suggested that PAHs have different environmental fates and migration paths. A combination of source analysis and trajectory model supported local sources from combustion of fossil fuel and vehicle exhaust contributed to the major portion on PAHs in particle, but on the Indochina Peninsula the large number of pollutants emitted by biomass burning during the fire season would affect the composition of PAHs through long-range transporting. Risk assessment in spatial and temporal variability suggested that citizens living in industrial areas were higher health risk caused by exposure the PM2.5-bound PAHs than that in other regions, and the risk in winter was three times than in summer.  相似文献   
942.
• Adding kaolin/zeolite promotes the formation of stable heavy metals. • The potential ecological risk index of co-pyrolysis biochar is extremely low. • Increasing the pyrolysis temperature reduces the leaching toxicity of heavy metals. • The toxicity of biochar reduces with the increasing content of stable heavy metals. Pyrolysis is a promising technique used for treating of sewage sludge. However, the application of pyrolysis products is limited due to the presence of heavy metals. In this study, sewage sludge mixed with kaolin/zeolite was pyrolyzed in a rotary kiln, aiming to improve the immobilization of heavy metals in pyrolytic carbon. The total concentrations, speciation distributions, leaching toxicities, and potential ecological risk indices of heavy metals in pyrolysis biochar were explored to examine the effects of kaolin/zeolite and pyrolytic temperature on immobilizing heavy metals. Further, mineral composition and surface morphology of biochar were characterized by X-ray diffraction and scanning electron microscopy to reveal the potential mechanism of immobilizing heavy metals. Increasing pyrolysis temperature facilitated the stabilization of heavy metals in pyrolysis biochar. The proportions of stable heavy metals in biochar obtained at 650℃ were 54.50% (Cu), 29.73% (Zn), 79.29% (Cd), 68.17% (Pb) and 86.70% (Cr). Compared to sewage sludge, the potential contamination risk index of pyrolysis biochar obtained at 650℃ was reduced to 17.01, indicating a low ecological risk. The addition of 7% kaolin/zeolite further reduced the risk index of co-pyrolysis biochar prepared at 650℃ to 10.86/15.28. The characterization of biochar revealed that increase in the pyrolysis temperature and incorporation of additives are conducive to the formation of stable heavy metal-inorganics. This study demonstrates that the formation of stable mineral compounds containing heavy metals is the key to stabilizing heavy metals in pyrolysis biochar.  相似文献   
943.
Environmental Science and Pollution Research - Metal-free biochar to activate persulfate and degrade organic contaminants has attracted great attention in advanced oxidation processes, while the...  相似文献   
944.
祁浩  庄坚  庄重  王琪  万亚男  李花粉 《环境科学》2023,44(6):3600-3608
蔬菜中重金属累积引发的健康风险逐渐被重视.通过文献查阅与实地样品采集,搭建了我国蔬菜-土壤系统重金属元素含量数据库,系统地分析了我国蔬菜可食部位中7项重金属含量特征和不同种类蔬菜对重金属的生物累积能力.此外,采用蒙特卡罗模拟评估了通过摄入4种类型蔬菜导致的非致癌健康风险.蔬菜可食部位ω(Cd)、ω(As)、ω(Pb)、ω(Cr)、ω(Hg)、ω(Cu)和ω(Zn)的平均值分别为0.093、 0.024、 0.137、 0.118、 0.007、 0.622和3.272 mg·kg-1,其中5种有害元素的超标率为:Pb(18.5%)>Cd(12.9%)>Hg(11.5%)>Cr(4.03%)>As(0.21%).叶菜类蔬菜表现出较高的Cd富集能力,根茎类蔬菜表现出较高的Pb富集能力,其富集系数的平均值分别为0.264和0.262,而豆类蔬菜和茄果类蔬菜表现出较低的重金属富集能力.健康风险结果表明,蔬菜摄入的单项元素非致癌风险在可接受范围,其中儿童的健康风险高于成人.单项元素非致癌风险HQ平均值表现为:Pb>Hg>Cd>As&...  相似文献   
945.
构建汞物质平衡模型以识别高汞触媒及低汞触媒电石法聚氯乙烯(CCPVC)企业中汞的产生、转化和排放过程.进一步针对典型企业开展成本效益分析,比较通过低汞触媒替代来履行《关于汞的水俣公约》要求的各种方案.结果表明,案例企业将在履约的情况下,使废气和废水汞排放量分别减少25%和85.7%~98.9%,净效益增加50.7%~55.4%.案例企业最有利的选择将是在厂内回收废触媒并改进汞减排设施,但含汞固体废物的环境风险不可忽视.原因是《关于汞的水俣公约》侧重于CCPVC行业的汞输入而非汞排放.此外,目前的汞环境税率低于最优税率,无法为CCPVC企业提供足够的激励以控制汞排放.因此,为了提高《关于汞的水俣公约》的政策效力,有必要推动我国CCPVC行业汞物质平衡的构建,加强对含汞固体废物堆存的监管力度,提高汞排放的环境税率,并将所含的环境风险物质量作为固体废物的计税依据.  相似文献   
946.
Soil is a major sink for per- and perfluoroalkyl substances (PFAS), wherein PFAS may be transferred through the food chain to predators at upper trophic levels, which poses a threat to human health. Herein, the concentrations and distributions of legacy and novel PFAS in topsoil samples from different functional areas in Tianjin were comprehensively investigated. Seventeen PFAS congeners were identified, with concentrations ranging from 0.21 ng/g to 5.35 ng/g, with a mean concentration of 1.25 ng/g. The main PFAS in the topsoil was perfluorooctanoic acid (PFOA). 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA; <MDL–1.95 ng/g, mean 0.11 ng/g), as an emerging substitute for perfluorooctane sulfonate (PFOS), was also detected in the topsoil. It showed slightly higher concentrations than PFOS (<MDL–1.62 ng/g, mean 0.10 ng/g), indicating it has gradually replaced legacy PFOS in this area. Based on the positive-definite matrix factor (PMF) receptor model, the major PFAS sources was dominated by textile treatment, metal electroplating plants, and some potential precursors of PFAS with longer chains (>C8) were the major sources (43.4%), followed by food packaging as well as coating materials (25.5%). In addition, Spearman correlation analysis and the structural equation model showed that population density significantly impacted the PFAS distribution in the topsoil of Tianjin.  相似文献   
947.
Recently, the application of sulfur (S) has been recommended to control the accumulation of cadmium (Cd) in rice in contaminated paddy soil. However, the effects of exogenous S on Cd transfer in paddy rice systems under different water-management practices have not been systematically investigated. Pot experiments were performed to monitor the composition of soil pore water and the Cd accumulation in iron plaque and rice tissue were compared under different S (0 and 200 mg/kg Na2SO4) and water (continuous and discontinuous flooding) treatments. Sulfur application significantly increased Cd concentrations in soil pore water under discontinuous flooding conditions, but slightly reduced them under continuous flooding. Moreover, the oxidation/reduction potential (Eh) was the most critical factor that affected the Cd levels. When the Eh exceeded −42.5 mV, S became the second critical factor, and excessive S application promoted Cd dissolution. In addition, S addition elevated the Cd levels in iron plaque and reduced the Cd transfer from the iron plaque to rice roots. In rice, S addition inhibited Cd transfer from the rice roots to the straw; thus, more Cd was stored in the rice roots. Nevertheless, additional S application increased the Cd content in the rice grains by 72% under discontinuous flooding, although this effect was mitigated by continued flooding. Under simulated practical water management conditions, S addition increased the risk of Cd contamination in rice, suggesting that S application should be reconsidered as a paddy fertilization strategy.  相似文献   
948.
The transformation of mercury (Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethylation processes driven or mediated by the dynamics of light, microorganisms, and organic carbon, among others. Advances in understanding those Hg transformation processes determine our capacity of projecting and mitigating Hg risk. Here, we provide a critical analysis of major knowledge gaps in our understanding of Hg transformation in nature, with perspectives on approaches moving forward. Our analysis focuses on Hg transformation processes in the environment, as well as emerging methodology in exploring these processes. Future avenues for improving the understanding of Hg transformation processes to protect ecosystem and human health are also explored.  相似文献   
949.
Biochar has been used increasingly as a soil additive to control mercury (Hg) pollution in paddy rice fields. As the most active component of soil organic matter, soil dissolved organic matter (DOM) plays a vital role in the environmental fate of contaminants. However, there are very few studies to determine the impact of biochar on the Hg cycle in rice paddies using insights from DOM. This study used original and modified biochar to investigate their effect on DOM dynamics and their potential impact on methylmercury (MeHg) production and bioaccumulation in rice plants. Porewater DOM was collected to analyze the variations in soil-derived DOM in paddy soils. The results showed that the addition of biochar, whether in original or modified form, significantly reduced the bioaccumulation of MeHg in rice plants, especially in hulls and grains (p<0.05). However, MeHg production in soils was only inhibited by the modified biochar. Biochar addition induced a significant increase in DOM's aromaticity and molecular weight (p<0.05), which decreased Hg bioavailability. Furthermore, enhanced microbial activity was also observed in DOM (p<0.05), further increasing MeHg production in the soil. Thus, the effect of biochar on the fate of Hg cycle involves competition between the two different roles of DOM. This study identified a specific mechanism by which biochar affects Hg behavior in rice paddy soil and contributes to understanding the more general influence of biochar in agriculture and contaminant remediation.  相似文献   
950.
Effective biomarkers are necessary to better understand the human mercury (Hg) exposure levels. However, mismatched biomarker sampling method causes extra uncertainty in assessing the risk of Hg exposure. To compare the differences between hair and fingernail, and further understand the excretion rates of methylmercury (MeHg) and inorganic mercury (IHg) via hair and fingernails, the total mercury (THg), MeHg, and IHg concentrations in paired hair and fingernail samples were investigated through paired samples collected from two typical mining areas, Wanshan mercury mine area (WMMA) and Hezhang zinc smelting area (HZSA). The positive correlation in THg, MeHg, and IHg concentrations (p <0.01) between hair and fingernail samples indicated that those two biomarkers can be corrected in application of assessing human Hg exposure. Compared to fingernails, the hair was suggested to be a more sensitive biomarker as the concentration of THg, MeHg and IHg were 2 ∼ 4 times higher than those in fingernails. Furthermore, the amounts of THg, MeHg, and IHg excreted via hair were 70 ∼ 226 times higher than that excreted via fingernails, and the hair plays a more important role than fingernails in the excretion of Hg from human bodies. Present study therefore provides some new insights to better understand the fate of human assimilated Hg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号