首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
废物处理   3篇
环保管理   4篇
综合类   5篇
基础理论   1篇
污染及防治   23篇
评价与监测   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2002年   3篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
In this study a method is suggested to compare the net carbon dioxide (CO2) emission from the construction of concrete- and wood-framed buildings. The method is then applied to two buildings in Sweden and Finland constructed with wood frames, compared with functionally equivalent buildings constructed with concrete frames. Carbon accounting includes: emissions due to fossil fuel use in the production of building materials; the replacement of fossil fuels by biomass residues from logging, wood processing, construction and demolition; carbon stock changes in forests and buildings; and cement process reactions. The results show that wood-framed construction requires less energy, and emits less CO2 to the atmosphere, than concrete-framed construction. The lifecycle emission difference between the wood- and concrete-framed buildings ranges from 30 to 130 kg C per m2 of floor area. Hence, a net reduction of CO2 emission can be obtained by increasing the proportion of wood-based building materials, relative to concrete materials. The benefits would be greatest if the biomass residues resulting from the production of the wood building materials were fully used in energy supply systems. The carbon mitigation efficiency, expressed in terms of biomass used per unit of reduced carbon emission, is considerably better if the wood is used to replace concrete building material than if the wood is used directly as biofuel.  相似文献   
2.
Remediation mainly based on excavation and burial of the contaminated soil is impractical with regard to the large numbers of sites identified as being in need of remediation. Therefore, alternative methods are needed for brownfield remediation. This study was conducted to assess a chemical stabilization procedure of CCA-contaminated soil using iron (Fe)-containing blaster sand (BS) or oxygen-scarfing granulate (OSG). The stabilization technique was assessed with regard to the feasibility of mixing ameliorants at an industrial scale and the efficiency of the stabilization under different redox conditions. The stability was investigated under natural conditions in 1-m3 lysimeters in a field experiment, and the effect of redox conditions was assessed in a laboratory experiment (10 L). The treatments with high additions of ameliorant (8% and 17%) were more successful in both the laboratory and field experiments, even though there was enough Fe on a stochiometric basis even at the lowest addition rates (0.1% and 1%). The particle size of the Fe and the mixing influenced the stabilization efficiency. The development of anaerobic conditions, simulated by water saturation, increases the fraction of arsenic (AsIII) and, consequently, As mobility. The use of high concentrations of OSG under aerobic conditions increased the concentrations of nickel (Ni) and copper (Cu) in the pore water. However, under anaerobic conditions, it decreased the As leaching compared with the untreated soil, and Ni and Cu leaching was not critical. The final destination of the treated soil should govern the amendment choice, that is, an OSG concentration of approximately 10% may be suitable if the soil is to be landfilled under anaerobic conditions. Alternatively, the soil mixed with 1% BS could be kept under aerobic conditions in a landfill cover or in situ at a brownfield site. In addition, the treatment with BS appeared to produce better effects in the long term than treatment with OSG.  相似文献   
3.
The impact of water saturation level (oxidizing-reducing environment) on As and metal solubility in chromium, copper, arsenic (CCA)-contaminated soil amended with Fe-containing materials was studied. The soil was mixed with 0.1 and 1 wt% of iron grit (Fe(0)) and 1, 7 and 15 wt% of oxygen scarfing granulate (OSG, a by-product of steel processing). Solubility of As and metals was evaluated by a batch leaching test and analysis of soil pore water. Soil saturation with water greatly increased As solubility in the untreated as well as in the Fe-amended soil. This was related to the reductive dissolution of Fe oxides and increased concentration of As(III) species. Fe amendments showed As reducing capacity under both oxic and anoxic conditions. The cytotoxicity of the soil pore water correlated with the concentration of As(III). The Fe-treatments as well as water saturation of soil were less significant for the solubility of Cu, Cr and Zn than for As. The batch leaching test used for waste characterization substantially underestimated As solubility that could occur under water-saturated (anaerobic) conditions. In the case of soil landfilling, other techniques than Fe-stabilization of As containing soil should be considered.  相似文献   
4.
Energy and carbon balances of wood cascade chains   总被引:1,自引:0,他引:1  
In this study we analyze the energy and carbon balances of various cascade chains for recovered wood lumber. Post-recovery options include reuse as lumber, reprocessing as particleboard, pulping to form paper products, and burning for energy recovery. We compare energy and carbon balances of chains of cascaded products to the balances of products obtained from virgin wood fiber or from non-wood material. We describe and quantify several mechanisms through which cascading can affect the energy and carbon balances: direct cascade effects due to different properties and logistics of virgin and recovered materials, substitution effects due to the reduced demand for non-wood materials when wood is cascaded, and land use effects due to alternative possible land uses when less timber harvest is needed because of wood cascading. In some analyses we assume the forest is a limiting resource, and in others we include a fixed amount of forest land from which biomass can be harvested for use as material or biofuel. Energy and carbon balances take into account manufacturing processes, recovery and transportation energy, material recovery losses, and forest processes. We find that land use effects have the greatest impact on energy and carbon balances, followed by substitution effects, while direct cascade effects are relatively minor.  相似文献   
5.
GOAL, SCOPE AND BACKGROUND: Sweden is meeting prohibition for deposition of organic waste from 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a higher degree. Two biological treatment alternatives are anaerobic digestion and composting. Different oxygen concentrations result in different microbial degradation pathways and, consequently, in a different quality of the digestion or composting residue, It is therefore necessary to study sludge treatment during different oxygen regimes in order to follow both degradation of compounds and change in toxicity. In this study, an industrial sludge containing explosives and pharmaceutical residues was treated with anaerobic digestion or composting, and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of both pharmaceutical and explosives, are well known to cause cytotoxicity and genotoxicity. However, little data are available concerning sludge with nitroaromatics and any associated dioxin-like activity. Therefore, we studied the sludge before and after the treatments in order to detect any changes in levels of Ah receptor (AhR) agonists using two bioassays for dioxin-like compounds. METHODS: An industrial sludge was treated with anaerobic digestion or composting in small reactors in a semi-continuous manner. The same volume as the feeding volume was taken out daily and stored at -20 degrees C. Sample preparation for the bioassays was done by extraction using organic solvents, followed by clean up with silica gel or sulphuric acid, yielding two fractions. The fractions were dissolved in DMSO and tested in the bioassays. The dioxin-like activity was measured using the DR-CALUX assay with transfected H4IIE rat hepatoma pGudluc cells and an EROD induction assay with RTL-W1 rainbow trout liver cells. RESULTS AND DISCUSSION: The bioassays showed that the sludge contained AhR agonists at levels of TCDD equivalents (TEQs) higher than other sludge types in Sweden. In addition, the TEQ values for the acid resistant fractions increased considerably after anaerobic digestion, resulting in an apparent formation of acid resistant TEQs in the anaerobic reactors. Similar results have been reported from studies of fermented household waste. There was a large difference in effects between the two bioassays, with higher TEQ levels in the RTL-W1 EROD assay than in the DR-CALUX assay. This is possibly due to a more rapid metabolism in rat hepatocytes than in trout hepatocytes or to differences in sensitivities for the AhR agonists in the sludge. It was also demonstrated by GC/FID analysis that the sludge contained high concentrations of nitroaromatics. It is suggested that nitroaromatic metabolites, such as aromatic amines and nitroanilines, are possible candidates for the observed bioassay effects. It was also found that the AhR agonists in the sludge samples were volatile. CONCLUSIONS: The sludge contained fairly high concentrations of volatile AhR agonists. The increase of acid resistant AhR agonist after anaerobic digestion warrants further investigations of the chemical and toxic properties of these compounds and of the mechanisms behind this observation. RECOMMENDATION AND OUTLOOK: This study has pointed out the benefits of using different types of mechanism-specific bioassays when evaluating the change in toxicity by sludge treatment, in which measurement of dioxin-like activity can be a valuable tool. In order to study the recalcitrant properties of the compounds in the sludge using the DR-CALUX assay, the exposure time can be varied between 6 and 24 hours. The properties of the acid-resistant AhR agonists formed in the anaerobic treatment have to be investigated in order to choose the most appropriate method for sludge management.  相似文献   
6.
7.
Helander B  Bignert A  Asplund L 《Ambio》2008,37(6):425-431
This paper summarizes results from the monitoring of reproduction of white-tailed sea eagle in Sweden 1965-2006. Since 1989 the eagle population on the Swedish Baltic coast has been included in the National Environment Monitoring Program as an indicator species for potentially harmful chemicals. The percentage of successfully reproducing pairs and nestling brood size decreased in synchrony with rising concentrations of contaminants in the 1950s on into the 1970s. Mean productivity was 1.3 young per pair prior to 1950 and decreased to 0.3 in 1965-1985. Dichlorodiphenyldichloroethene (DDE) in eagle eggs decreased from a range of annual means in 1965-1974 of 600-1200 microg g(-1) (lipid weight) to 60-140 microg g(-1) in 1996-2005. Total polychlorinated biphenyl (PCB) concentrations averaged above 1000 microg g(-1) into the early 1980s and remained in the range of 250-500 microg g(-1) in 1996-2005. Productivity began to improve when concentrations of DDE and PCBs dropped below approximately 300 and 800 microg g(-1), respectively. Brood size remains below the pre-1950 level in one coastal region, indicating a possible impact from other contaminants. The power to detect significant trends under the program is presented and discussed: if white-tailed sea eagle reproduction had been monitored earlier during the 20th century, the negative impact of dichlorodiphenyltrichloroethane (DDT, source of DDE) would have been signaled as early as the 1950s in the Baltic Sea. The dramatic fall of white-tailed sea eagle reproduction under the influence of DDT and PCBs, and the subsequent rise following their ban, illustrates the usefulness of raptors like sea eagles as sentinels for environmental pollutants.  相似文献   
8.
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) are present in the ecosystem of the Baltic Sea. OH-PBDEs are known to be both natural products from marine environments and metabolites of the anthropogenic polybrominated diphenyl ethers (PBDEs), whereas, MeO-PBDEs appear to be solely natural in origin. Polybrominated dibenzo-p-dioxins (PBDDs) are by-products formed in connection with the combustion of brominated flame retardants (BFRs), but are also indicated as natural products in a red alga (Ceramium tenuicorne) and blue mussels living in the Baltic Sea. The aims of the present investigation were to quantify the OH-PBDEs and MeO-PBDEs present in C. tenuicorne; to verify the identities of PBDDs detected previously in this species of red alga and to investigate whether cyanobacteria living in this same region of the Baltic Sea contain OH-PBDEs, MeO-PBDEs and/or PBDDs. The red alga was confirmed to contain tribromodibenzo-p-dioxins (triBDDs), by accurate mass determination and additional PBDD congeners were also detected in this sample. This is the first time that PBDDs have been identified in a red alga. The SigmaOH-PBDEs and SigmaMeO-PBDEs concentrations, present in C. tenuicorne were 150 and 4.6 ng g(-1) dry weight, respectively. In the cyanobacteria 6 OH-PBDEs, 6 MeO-PBDEs and 4 PBDDs were detected by mass spectrometry (electron capture negative ionization (ECNI)). The PBDDs and OH-PBDEs and MeO-PBDEs detected in the red alga and cyanobacteria are most likely of natural origin.  相似文献   
9.
Goal, Scope and Background Sweden has prohibited the deposition of organic waste since January, 2005. Since 1 million tons of sludge is produced every year in Sweden and the capacity for incineration does not fill the demands, other methods of sludge management have to be introduced to a larger degree. One common method in the USA and parts of Europe is the use of wetlands to treat wastewater and sewage sludge. The capacity of reed beds to affect the toxicity of a complex mixture of nitroaromatics in sludge, however, is not fully elucidated. In this study, an industrial sludge containing explosives and pharmaceutical residues was therefore treated in artificial reed beds and the change in toxicity was studied. Nitroaromatic compounds, which are the main ingredients of many pharmaceuticals and explosives, are well known to cause cytotoxicity and genotoxicity. Recently performed studies have also showed that embryos of zebrafish (Danio rerio) are sensitive to nitroaromatic compounds. Therefore, we tested the sludge passing through constructed wetlands in order to detect any changes in levels of embryotoxicity, genotoxicity and dioxin-like activity (AhR-agonists). We also compared unplanted and planted systems in order to examine the impact of the root system on the fate of the toxicants. Methods An industrial sludge containing a complex mixture of nitroaromatics was added daily to small-scale constructed wetlands (vertical flow), both unplanted and planted with Phragmites australis. Sludge with an average dry weight of 1.25%, was added with an average hydraulic loading rate of 1.2 L/day. Outgoing water was collected daily and stored at −20°C. The artificial wetland sediment was Soxhlet extracted, followed by clean-up with multi-layer silica, or extracted by ultrasonic treatment, yielding one organic extract and one water extract of the same sample. Genotoxicity of the extracts was measured according to the ISO protocol for the umu-C genotoxicity assay (ISO/TC 147/SC 5/WG9 N8), using Salmonella typhimurium TA1535/pSK1002 as test organism. Embryotoxicity and teratogenicity were studied using the fish egg assay with zebrafish (Danio rerio) and the dioxin-like activity was measured using the DR-CALUX assay. Chemical analyses of nitroaromatic compounds were performed using Solid Phase Micro Extraction (SPME) and GC-MS. Results Organic extracts of the bed material showed toxic potential in all three toxicity tests after two years of sludge loading. There was a difference between the planted and the unplanted beds, where the toxicity of organic extracts overall was higher in the bed material from the planted beds. The higher toxicity of the planted beds could have been caused by the higher levels of total carbon in the planted beds, which binds organic toxicants, and by enrichment caused by lower volumes of outgoing water from the planted beds. Discussion Developmental disorders were observed in zebrafish exposed directly in contact to bed material from unplanted beds, but not in fish exposed to bed material from planted beds. Hatching rates were slightly lower in zebrafish exposed to outgoing water from unplanted beds than in embryos exposed to outgoing water from planted beds. Genotoxicity in the outgoing water was below detection limit for both planted and unplanted beds. Most of the added toxicants via the sludge were unaccounted for in the outgoing water, suggesting that the beds had toxicant removal potential, although the mechanisms behind this remain unknown. Conclusions During the experimental period, the beds received a sludge volume (dry weight) of around three times their own volume. In spite of this, the toxicity in the bed material was lower than in the sludge. Thus, the beds were probably able to actually decrease the toxicity of the added, sludge-associated toxicants. When testing the acetone extracts of the bed material, the planted bed showed a higher toxicity than the unplanted beds in all three toxicity tests. The toxicity of water extracts from the unplanted beds, detected by the fish egg assay, were higher than the water extracts from the planted beds. No genotoxicity was detected in outgoing water from either planted or unplanted beds. All this together indicates that the planted reed beds retained semi-lipophilic acetone-soluble toxic compounds from the sludge better than the unplanted beds, which tended to leak out more of the water soluble toxic compounds in the outgoing water. The compounds identified by SPME/GC in the outgoing water were not in sufficient concentrations to have caused induction in the genotoxicity test. Recommendations and Perspectives This study has pointed out the benefits of using constructed wetlands receiving an industrial sludge containing a complex mixture of nitroaromatics to reduce toxicity in the outgoing water. The water from planted, constructed wetlands could therefore be directed to a recipient without further cleaning. The bed material should be investigated over a longer period of time in order to evaluate potential accumulation and leakage prior to proper usage or storage. The plants should be investigated in order to examine uptake and possible release when the plant biomass is degraded. This article has been developed on the basis of a presentation given at the Annual meeting of SETAC Europe German Language Branch 2004 in Aachen. ESS-Submission Editor: Dr. Ludek Blaha (blaha@recetox.muni.cz)  相似文献   
10.
When selecting a landfill leachate treatment method the contaminant composition of the leachate should be considered in order to obtain the most cost-effective treatment option. In this study the filter material pine bark was evaluated as a treatment for five landfill leachates originating from different cells of the same landfill in Sweden. The objective of the study was to determine the uptake, or release, of metals and dissolved organic carbon (DOC) during a leaching test using the pine bark filter material with the five different landfill leachates. Furthermore the change of toxicity after treatment was studied using a battery of aquatic bioassays assessing luminescent bacteria (Vibrio fischeri) acute toxicity (30-min Microtox®), immobility of the crustacean Daphnia magna, growth inhibition of the algae Pseudokirchneriella subcapitata and the aquatic plant Lemna minor; and genotoxicity with the bacterial Umu-C assay. The results from the toxicity tests and the chemical analysis were analyzed in a Principal Component Analysis and the toxicity of the samples before and after treatment was evaluated in a toxicity classification. The pine bark filter material reduced the concentrations of metal contaminants from the landfill leachates in the study, with some exceptions for Cu and Cd. The Zn uptake of the filter was high for heavily contaminated leachates (≥73%), although some desorption of zinc occurred in less contaminated waters. Some of the leachates may require further treatment due to discharge into a natural recipient in order to reduce the risk of possible biological effects. The difference in pH changes between the different leachates was probably due to variations in buffering capacity, affected by physicochemical properties of the leachate. The greatest desorption of phenol during filtration occurred in leachates with high conductivity or elevated levels of metals or salts. Generally, the toxicity classification of the leachates implies that although filter treatment with pine bark removes metal contaminants from the leachates effectively, it does not alter leachate toxicity noticeably. The leachates with the highest conductivity, pH and metal concentrations are most strongly correlated with an increased toxic response in the score plots of both untreated and treated leachates. This is in line with the toxicity classification of the leachate samples. The results from this study highlight the importance of evaluating treatment efficiency from the perspective of potential recipient effects, rather than in terms of residual concentrations of individual contaminants when treating waters with a complex contamination matrix, such as landfill leachates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号