首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   6篇
  国内免费   25篇
安全科学   26篇
废物处理   87篇
环保管理   57篇
综合类   81篇
基础理论   91篇
环境理论   1篇
污染及防治   226篇
评价与监测   58篇
社会与环境   19篇
灾害及防治   4篇
  2023年   10篇
  2022年   8篇
  2021年   10篇
  2020年   7篇
  2019年   11篇
  2018年   20篇
  2017年   31篇
  2016年   28篇
  2015年   18篇
  2014年   25篇
  2013年   58篇
  2012年   33篇
  2011年   48篇
  2010年   34篇
  2009年   45篇
  2008年   43篇
  2007年   41篇
  2006年   42篇
  2005年   30篇
  2004年   31篇
  2003年   14篇
  2002年   15篇
  2001年   13篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有650条查询结果,搜索用时 15 毫秒
1.
When combined in the lining and covering of waste-containment facilities, soil and geosynthetic components protect the environment by acting as a hydraulic barrier. Equipment loading may significantly increase the tensile stress induced in geosynthetic components, leading to a potential stability problem. Large equipment loadings may also result in a localized circular slip surface during construction operations. New analytical method based on discrete element modelling is proposed for estimating the distribution of tensile force developed in the individual geosynthetic components of the lining system and for evaluating the safety factor of slope failure due to equipment loading. The analytical results of an example are presented to demonstrate the applicability of the analytical method for the lining system of a waste landfill. The analyses of the example show that equipment loading provide a substantial increase in the tensile forces of the geosynthetic components of a lining system and that the possibility of shallow failure due to equipment loading increases as the slope becomes steeper. This method is a useful tool for analysing the lining system of waste landfills with complex lining components.  相似文献   
2.
 The effect of the soil solids concentration in batch tests on the measured values of the partition coefficient (K p) of organic pollutants in landfill liner-soil material was investigated. Since this study was based on the results of batch and column tests conducted independently, there were limitations to the conclusions derived. The organic compounds tested were benzene, methylene chloride, toluene, trichloroethylene, and p-xylene. The results of this study showed that as soil solids concentrations increased, the measured K p values of these organic compounds strongly decreased. The observed values of K p stabilized when the soil solids concentration was above a certain value. Typical K p values obtained from batch tests conducted under high soil solids concentrations were close to those obtained from column tests. It was concluded that the K p values of organic compounds measured under low soil solids concentrations, i.e., less than 100 g/l, may not correctly simulate the field situation. Consequently, the values of K p obtained with low soil solids concentrations can result in an overestimation of the retardation factor of the landfill liner material. Received: March 14, 2002 / Accepted: August 25, 2002  相似文献   
3.
A data analysis of three major Korean cities was conducted to assess roadside inhalable particulate matter 10 μm or smaller in aerodynamic diameter (PM10), including temporal and meteorological variations, over a recent period of 4 to 6 years. The yearly roadside PM10 concentrations presented a well-defined increasing trend or no trend depending on the roadside monitoring station. Most mean values exceeded or approximated the Korean standard of 70 μg/m3 per year for PM10. A representative roadside diurnal trend was characterized by a distinct morning maximum. In most cases, the Sunday roadside concentrations were similar to or somewhat lower than the weekday concentrations, and the PM10 concentrations presented a well-defined seasonal variation, with the maximum concentration in March. The monthly maximum concentrations observed in March were most likely attributable to Asian dust storms. In two metropolitan cities (Seoul and Busan), the frequency of days with roadside PM10 concentrations exceeding the standard of 150μg/m3 per 24 h was much lower for the roadside monitoring stations than for the residential monitoring station, whereas in the third city (Daegu), this result was reversed. Interestingly, the average maximum concentrations observed for the roadside sites in Seoul and Busan during March were higher than those for the residential sites, suggesting that the roadside concentrations responded more to the dust storms than the residential areas. The relationship between the pollutant concentrations and five important meteorological parameters (solar radiation, wind speed, air temperature, relative humidity, and precipitation) showed that the number and type of meteorological variables included in the equations varied according to the monitoring station or season. Finally, the current results confirmed that attention should be given to the PM10 exposure of residents living near roadways.  相似文献   
4.
The soil erodibility index (EI) of Conservation Reserve Program (CRP) lands, which was the major criterion for CRP enrollment, was assessed for six counties in southwestern Kansas using USGS seamless digital elevation model data and Geographical Informational System techniques. The proportion of land areas with EI values of 8 or lower was less than 1% of the entire study area and most of the land areas (72.5%) were concentrated on EI values between 8 and 24. Although land acreage with EI values of 24 or higher decreased dramatically, the proportion of CRP lands to the other land-use types did not change much from low to high EI levels. The soil EI and physical soil characteristics of the CRP lands were compared to those of other land-use types. In general, the mean EI values of the land-use types were strongly correlated with physical soil properties, including organic matter content, clay content, available water capacity, permeability, and texture. CRP lands were compared in detail with cropland in terms of their soil characteristics to infer the pivotal cause of the land transformation. Although there was no significant statistical difference in EI between cropland and CRP soils, soil texture, soil family, and permeability were statistically different between the two. Statistical analyses of these three variables showed that CRP soils had coarser texture and higher permeability on average than cropland soils, indicating that CRP lands in the study area are drier than cropland soils. Therefore, soil moisture characteristics, not necessarily soil erosion potential, might have been the key factor for CRP enrollment in the study area.  相似文献   
5.
Shin SK  Jin GZ  Kim WI  Kim BH  Hwang SM  Hong JP  Park JS 《Chemosphere》2011,83(10):1339-1344
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) were measured in ambient air samples collected from different parts of South Korea in 2008, and the measured levels were used for assessing the spatial and temporal distribution of atmospheric PCDDFs and DL-PCBs in South Korea. The average concentrations of atmospheric PCDD/Fs and DL-PCBs among the 37 sites were 28 fg I-TEQ m−3 (ND ∼ 617) and 1 fg WHO-TEQ m−3 (ND ∼ 0.016). Elevated atmospheric levels of PCDD/Fs and DL-PCBs observed at residential/industrial sites and in the north-west of Korea, indicated a potential contribution and impacts of anthropogenic sources of PCDD/Fs and DL-PCBs. These levels were similar or lower than those previously reported in other ambient air surveys. Average concentrations of PCDD/Fs showed small seasonal variations (ANOVA analysis, p = 0.144). The highest concentrations of PCDD/Fs were observed during winter, followed by spring, autumn and summer. Atmospheric PCDD/Fs and DL-PCBs in South Korea rapidly decreased during the last 10 years (1998-2008), demonstrating the efficiency of stricter regulations and the application of best available technologies/best environmental practices at emission sources. Comparison of the congener profiles and principal component analysis showed that current atmospheric PCDD/Fs are mostly influenced by industrial sources and PCBs from old commercial PCB uses. Nationwide POPs monitoring will continue and allows an effective evaluation of the implementation of the Stockholm Convention on POPs.  相似文献   
6.
Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) in human have been studied extensively; however, polychlorinated naphthalenes (PCNs) have been studied less widely. The mean concentrations of PCNs, PCDDs, PCDFs, and PCBs in 61 healthy human volunteers were 2170 pg/g lipid, 452 pg/g lipid, 116 pg/g lipid, and 120 ng/g lipid respectively, and the mean toxic equivalents (TEQs) contributed by PCNs, PCDDs, PCDFs, and PCBs were 5.88, 5.22, 5.48, and 5.33 pg/g lipid, respectively. PCNs contributed to 26.8% of the total TEQs. 1,2,3,7,8-PeCDD, 2,3,4,7,8-PeCDF, PCB126, and hepta-CN-73 accounted for >62% of the total TEQs in the human serum samples. The overall serum PCN homologue profiles of all subjects were dominated by tetra- and penta-CN homologues, and the most predominant individual congener was hepta-CN-73, which contributed 17.5% of the total serum PCN concentration. Enrichment of hepta-CN-73 in the human serum samples might be due to contributors from combustion sources.  相似文献   
7.
Fang M  Choi SD  Baek SY  Park H  Chang YS 《Chemosphere》2011,84(7):894-899
An IRA-743 resin bulk sampler was validated to monitor long-term bulk deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Six consecutive sampling campaigns (2008-2009) were conducted at four sites around steel complexes in Pohang, South Korea to investigate spatial and seasonal variations of PCDD/F bulk deposition. The bulk deposition within the steel complex showed the highest ∑4-8PCDD/F (Tetra-Octa) fluxes, ranging from 204 to 608 (mean: 352) pg m−2 d−1, indicating steel complexes were major sources of PCDD/Fs. The homologue profiles were dominated with lower chlorinated PCDFs. Furthermore, the prevailing winds were confirmed to influence the spatial distribution of PCDD/F deposition. There were apparent seasonal variations of the bulk deposition at each site, and seasonal homologue patterns of PCDD/Fs were clearly observed. According to the passive air sampling, however, no significant seasonal change of ambient air concentrations of PCDD/Fs was observed. Therefore, it was concluded that the seasonal variations of deposition fluxes of PCDD/Fs probably resulted from temperature-dependent gas/particle partitioning.  相似文献   
8.
An electrochemical COD (chemical oxygen demand) sensor using an electrode-surface grinding unit was investigated. The electrolyzing (oxidizing) action of copper on an organic species was used as the basis of the COD measuring sensor. Using a simple three-electrode cell and a surface grinding unit, the organic species is activated by the catalytic action of copper and oxidized at a working electrode, poised at a positive potential. When synthetic wastewater was fed into the system, the measured Coulombic yields were found to be dependent on the COD of the synthetic wastewater. A linear correlation between the Coulombic yields and the COD of the synthetic wastewater was established (10-1000 mg L(-1)) when the electrode-surface grinding procedure was activated briefly at 8 h intervals. When various kinds of wastewater samples obtained from various sewage treatment plants were measured, linear correlations (r(2)> or = 0.92) between the measured EOD (electrochemical oxygen demand) value and COD of the samples were observed. At a practical wastewater treatment plant, the measurement system was successfully operated with high accuracy and good stability over 3 months. These experimental results show that the application of the measurement system would be a rapid and practical method for the determination of COD in water industries.  相似文献   
9.
Dissolved gaseous mercury (DGM) and total mercury (TM) concentrations were measured in Juam Reservoir, Korea. DGM concentrations were higher in spring (64+/-13pgL(-1)) and summer (109+/-15pgL(-1)), and lower in fall (20+/-2pgL(-1)) and winter (23+/-6pgL(-1)). In contrast, TM concentrations were higher in fall (3.2+/-0.1ngL(-1)) and winter (3.3+/-0.1ngL(-1)) than in spring (2.3+/-0.1ngL(-1)) and summer (2.2+/-0.4ngL(-1)). DGM concentrations were correlated with water temperature (p<0.0001), ORP (p<0.0001), UV intensity (UV-A: p=0.008; UV-B: p=0.003), and DOC concentration (p=0.0107). DGM concentrations varied diurnally with UV intensity. The average summer DGM (109+/-15pgL(-1)) and TM (2.2+/-0.4ngL(-1)) concentrations in Juam Reservoir were higher than the averages for North American lakes (DGM=38+/-16pgL(-1); TM=1.0+/-1.2ngL(-1)), but lower than levels reported for Baihua Reservoir in China.  相似文献   
10.
Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box–Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand–metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model–genetic algorithm (RSM–GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47 μg/g) is facilitated at 30.22 mg C/L of EtOH with initial As(III) concentration of 196.77 μg/L at pH 5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号