首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   14篇
  国内免费   5篇
安全科学   1篇
废物处理   1篇
环保管理   1篇
综合类   46篇
基础理论   1篇
评价与监测   4篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   9篇
  2015年   6篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
排序方式: 共有54条查询结果,搜索用时 421 毫秒
41.
采用一个综合区域空气质量/酸沉降模型,对典型气象条件下贵阳市,贵州省和整个南地区不同尺度的SO2控制情景进行了模拟,数值模拟结果表明,贵州全省大点源排放是贵阳市酸沉降的最主要贡献者,贵阳市内的大电厂对贵阳市的SO2污染有一定的贡献,但对硫酸盐浓度和酸沉降贡献则较小,在此基础上,提出了贵阳市酸沉降和SO2污染的控制对策。  相似文献   
42.
综述了光催化材料纳米TiO2的制备、光催化降解水中有机污染物的机理、动力学规律及其研究现状和发展方向。  相似文献   
43.
一维平流输送问题的欧拉-泰勒-伽辽金算法及数值试验   总被引:1,自引:1,他引:0  
介绍了一维常系数平流输送问题的Euler-Taylor-Galerkin(ETG)算法?为获得精确的时间导数,该算法采用了包括二阶和三阶时间导数的前向泰勒级数展开,这些导数值可从空间控制微分方程求出?由此产生一般的时间分离方程?该方程采用标准的Bubnov-Galerkin有限元方法在空间离散化?在使用线性元(帽子函数)和Euler时间差分格式时,可获得精确的Taylor-Galerkin算法?当采用2步显示步骤时,算法为计算效率很高的显式?数值实验结果显示,ETG算法的误差很小,而相误差更可忽略不计,结果令人满意   相似文献   
44.
在空气质量模式CMAQ中增加了对大气中苯并[a]芘(BaP)传输、转化和沉降过程的模拟,新增了BaP气相/颗粒相间分配模式(KOA吸收模式)以及BaP化学转换,并采用该模型模拟了2014年1、4、7、10月四个季节代表月中国大气中BaP的浓度以及干湿沉降通量的空间分布特征.模拟结果与部分地区的实测数据进行了初步对比验证,结果显示BaP浓度的模拟值和测量值的量级基本一致,其比值基本在1~2个量级范围内,表明模拟结果处于可接受的范围.基于模型结果,还探讨了BaP浓度与沉降季节变化特征与人为源排放的紧密联系,说明湿沉降是BaP最主要的沉降途径.BaP沉降的空间分布与其排放源和浓度具有密切的联系,并且具有长距离输送的特征等.  相似文献   
45.
2015年北京市两次红色预警期间PM2.5浓度特征   总被引:2,自引:1,他引:2  
利用北京市及周边地区大气污染物监测数据,综合分析了2015年北京市两次空气重污染红色预警期间PM2.5浓度变化特征并初步评估了减排措施对PM2.5浓度的影响.结果表明:第1次红色预警期间,北京市PM2.5平均最高小时浓度出现在12月9日19:00,为282μg·m-3,单站最高小时值出现在京东南市界永乐店站,浓度达496μg·m-3.第2次红色预警期间,PM2.5全市平均最高小时浓度出现在12月22日20:00,为421μg·m-3;单站最高小时值出现在京西南市界琉璃河站,浓度达831μg·m-3.两次红色预警累积持续时间均呈现出南部站 > 城区站 > 北部站的特征,且第2次红色预警期间PM2.5浓度南北差异明显大于第1次,PM2.5平均浓度在150μg·m-3以上的面积明显大于第1次,第2次红色预警期间重污染面积可达总面积的93%.两次预警期间气象条件均不利于污染物的扩散,均存在不同程度的二次转化和区域输送现象,极端气象条件是重污染形成的外因,区域污染物排放量大才是导致重污染形成的内因.初步评估结果显示红色预警应急措施实施后,北京市PM2.5环境浓度下降约20%~25%,减排效果显著.  相似文献   
46.
乌鲁木齐市冬季典型污染事件气象过程分析   总被引:2,自引:0,他引:2  
采用数值模拟与观测资料相结合的方式,对乌鲁木齐市2008年1月10—15日的冬季典型重污染气象过程进行了分析.结果表明:乌鲁木齐市存在严重污染且与当地气象条件密切相关,其ρ(PM10)峰值往往对应近地面风场风向转变和低风速情况.边界层及上层大气持续存在的强稳定层结是影响乌鲁木齐市近地面空气ρ(PM10)变化的重要因素.天山山脉、乌鲁木齐河谷、准噶尔盆地及吐鲁番盆地间形成的山谷风局地环流配合辐射逆温,是形成乌鲁木齐市夜间深厚逆温的重要原因.深厚的夜间逆温在减少污染物向上扩散的同时也大大降低了上下动量的交换,造成地面静风频率的增加,减少了大气污染物平流输送的能力.   相似文献   
47.
2000~2014年北京市SO2时空分布及一次污染过程分析   总被引:2,自引:2,他引:2  
根据2000~2014年北京市SO2监测数据,系统分析了SO2时空分布特征并采用数值模式(CAMx)模拟分析了一次重污染过程中北京市SO2来源.结果表明,2014年与2000年相比北京市SO2年均浓度累计约降低69%,SO2年均浓度的变化率为-3.5μg·(m3·a)-1;北京市SO2的月均浓度呈U型分布,季节分布上整体呈现出冬季春季秋季夏季的特征,采暖季SO2浓度明显高于非采暖季;空间分布上北部及西部山区SO2浓度水平明显低于中心城区及西南、东南部地区,受减排措施影响较大的石景山、东四、通州监测点的SO2浓度降低明显;在2014年1月14~18日一次重污染过程中北京SO2存在明显的区域输送,PAST源示踪技术初步计算显示外来源对北京SO2浓度的贡献率为83%,其中北京周边高架点源电厂贡献占21%,北京4家主要燃煤电厂对全市SO2浓度贡献率约为3.5%.  相似文献   
48.
为评估京津冀及周边“2+26”城市农村居民面源污染控制成效,揭示其对北京市秋冬季重污染天气PM2.5污染的改善作用,及其对PM2.5组分硫酸盐形成机制的影响,采用空气质量模型对北京市2018—2019年秋冬季5次重污染事件进行了模拟. 结果表明:①在“2+26”城市平原地区民用散煤削减90%的控制情景下,区域PM2.5浓度最大值由324 μg/m3降至251 μg/m3,下降了23%. 北京市城区PM2.5浓度由139 μg/m3降至124 μg/m3,下降了11%;同时,北京市城区SO2、硫酸盐浓度分别降至6.2、14.9 μg/m3,分别下降了45%、24%. ②农村居民面源污染控制前北京市硫酸盐浓度的正贡献来源主要受水平平流输送过程影响,控制后水平平流输送过程仍起主导作用,但该过程在水平平流输送、垂直平流输送、水平扩散、垂直扩散这4个物理过程中的绝对重要性上升了2%;此外,农村居民面源污染控制后垂直扩散清除过程对硫酸盐浓度的贡献下降了33%,气溶胶二次转化过程的贡献下降了25%,但SO2向硫酸盐转化的速率加快,其小时转化率上升了1.44%. ③ISAM源解析方法结果表明,控制情景下区域工业过程是影响北京市SO2浓度的最主要行业源因素,平均贡献率为65%,硫酸盐工业过程源的平均贡献率为82%. 区域来源分析表明,北京市SO2来源主要为外地源输送,硫酸盐主要来源与SO2一致,其中河北省贡献较大,其对SO2、硫酸盐的平均贡献率分别达43%、40%. 研究显示,控制情景下污染期间北京市PM2.5污染改善,且污染物浓度、形成过程和来源贡献均发生明显变化.   相似文献   
49.
2015年春季北京市一次沙尘天气过程分析   总被引:1,自引:0,他引:1  
采用观测数据与轨迹模拟相结合的方法,综合分析了2015年3月26日-4月1日北京市一次沙尘天气过程中沙尘输送路径、天气形势、污染物浓度的变化特征,结果发现:此次外来沙尘路径为西北路径,沙尘源地位于蒙古国南部的戈壁地区;沙尘在冷空气和地面低压系统作用下快速移动,造成延庆、奥体中心、永乐店3站点PM_(10)2 h左右浓度维持1 000μg/m~3,能见度低于1 km,空气质量急剧恶化;沙尘过境时PM_(10)浓度明显上升,PM_(2.5)浓度受到的影响相对较小,SO_2、NO_2、CO浓度变化不明显;沙尘回流时携带区域污染物进入北京,各项污染物及颗粒物组分浓度出现一定程度的上升;受沙尘影响,Mg~(2+)、Ca~(2+)、Na~+浓度明显上升,峰值浓度分别为0.13、1.29、0.70μg/m~3,分别是年均浓度的1.86倍、2.80倍、2.06倍;沙尘天气过后,扩散条件转差,沙尘与污染天气相继共造成北京市空气质量连续4 d维持中度污染级别。  相似文献   
50.
为了解北京市夏季臭氧(O3)污染的特征与来源,采用区域空气质量模型(CMAQ)的综合源解析功能(ISAM)对北京市2019年6月不同区域的近地面O3浓度及其来源贡献进行了数值模拟计算,量化了北京市、天津市、河北省、京津冀以外省份以及全球背景共14类NOx和VOCs排放源对北京市不同区域O3污染的贡献. 结果表明:①北京市不同地区O3及其前体物来源存在显著差异,城区及近郊区NOx和VOCs均主要来自于北京市本地排放,本地源排放对城区及近郊区的NOx贡献(39.7%~46.4%)显著大于对远郊区的贡献(19.9%~38.8%),本地源排放对城区及近郊区的VOCs贡献(51.1%~75.8%)大于对远郊区的贡献(19.5%~39.6%). ②远郊区NOx和VOCs浓度更易受非本地排放的输送影响. ③O3主要来源于包括模拟区域外以及全球背景的边界传输贡献,边界传输对北京市不同受体区域的贡献均大于52.6%. ④北京市本地源排放对城区及近郊区O3的贡献(6.8%~18.3%)大于对远郊区的贡献(2.4%~7.6%),京津冀以外源区的排放对北京市远郊区的贡献(5.2%~6.4%)大于对城区及近郊区的贡献(2.7%~4.4%),说明本地排放对远郊区影响相对较小,远郊区O3浓度易受北部燕山山脉和太行山的阻隔影响. 因地理位置及地形原因,河北省不同源区对北京市不同区域O3浓度的贡献存在一定差异. 研究显示,控制北京市夏季O3污染应综合考虑城区与郊区O3来源的差异性,做好周边区域的联防联控.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号