首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   6篇
  国内免费   26篇
安全科学   14篇
废物处理   3篇
环保管理   1篇
综合类   49篇
基础理论   8篇
污染及防治   4篇
评价与监测   4篇
社会与环境   3篇
  2023年   7篇
  2022年   6篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   6篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
排序方式: 共有86条查询结果,搜索用时 0 毫秒
61.
为定量评价湖南省西部地区可持续发展能力,采用2008-2013年新晃县统计年鉴和世界自然基金会(WWF)的相关数据,对新晃县6a(2007-2012年)来人均生态足迹和人均生态承载力进行实证计算和分析。结果表明:新晃县2007-2012年在较低的发展水平下一直处于生态赤字状态,且生态赤字逐年上升,处于不可持续的发展状态。同时在测算生态经济系统多样性指标和发展能力指标时发现生态经济多样性指数提升,系统的发展能力有所提高。最后讨论本研究中发现的生态足迹法存在的一些问题。  相似文献   
62.
随着社会经济的发展,大量含有抗生素的废水未经有效处理排放到水环境中,加剧了城市水环境中抗生素的污染.本研究以石家庄市地表水和地下水为研究对象,采用超高效液相色谱串联质谱法(HPLC-MS)分析了石家庄水环境中喹诺酮类(Quinolones,QNs)抗生素的空间分布特征,并采用风险熵值法(RQ)评估了石家庄市水环境中QNs的生态风险和健康风险.结果表明:1在石家庄市河流和水库中,QNs抗生素的浓度分别为98.43~4398.00 ng·L-1和9.99~49.24 ng·L-1,恩诺沙星(Enrofloxacin,ENR)和依诺沙星(Enoxacin,ENO)分别是河流和水库中主要的QNs抗生素;2在石家庄市地下水中,QNs抗生素的浓度为3.45~15.41 ng·L-1;3相关分析结果表明,在地表水中氧氟沙星(Ofloxacin,OFL)、诺氟沙星(Norfloxacin,NOR)、恩诺沙星(Enrofloxacin,ENR)、双氟沙星(Difloxacin,DIF)、沙氟沙星(Sarafloxacin,SAR)、恶喹酸(Oxolinic Acid,OXO)和氟甲喹(Flumequine,FLU)与温度(T)和总溶解性固体颗粒物(TDS)呈显著相关(p<0.01),而ENO与pH显著相关(p<0.01);在地下水中吡哌酸(Pipemidic Acid,PIP)和马波沙星(Marbofloxacin,MAR)与T显著相关;4地表水中QNs与地下水中QNs的相关性不显著,表明石家庄市地下水中QNs的主要来源不是地表水;5生态风险结果表明,石家庄市地表水中QNs总体处于高风险水平,而地下水QNs整体处于中低风险水平;6人体健康风险结果表明,石家庄市水环境中QNs抗生素的健康风险较低.总体来说,石家庄市水环境中QNs污染在地表水中更为严峻,而石家庄地表水中QNs浓度最高的区域为汪洋沟.  相似文献   
63.
为研究坡度盾构隧道集中排烟模式下排烟阀的最佳开启方式,依托江阴靖江长江隧道,选取水下盾构隧道最常见的3%坡度作为研究对象,采用理论分析、数值模拟等方法,对3%坡度、不同排烟阀开启方式情况下的烟气蔓延范围、排烟阀温度、排烟阀流速及排烟效率进行了分析。结果表明:3%坡度盾构隧道火源下游排烟阀在排烟系统中起关键作用,上游排烟阀的开启会降低排烟效率;随排烟阀开启组数减少和向下游偏移,排烟系统排烟效率明显增大,提升范围为12.66%~50.84%;建议3%坡度盾构隧道发生50 MW火灾时,若开启6组排烟阀,则上游1组下游5组,若开启5组排烟阀,则上游0组下游5组,若开启4组排烟阀,则上游0组下游4组。  相似文献   
64.
文章比较研究了皂角苷(saponin)、Triton X-100以及二者的混合物对多环芳烃菲在土壤和水相间分配行为的影响。结果表明,在所选择的表面活性剂中,皂角苷对菲在水和土壤间的分配具有最强的增溶能力。在竞争吸附的作用下,随着加入的表面活性剂的量不同,菲在水和土壤间的分配行为也有差异。当表面活性剂的浓度较低时,促进菲在土壤上的吸附;当加入的表面活性剂的量超过其临界胶束浓度(CMC)时,菲在水和土壤间的分配系数随着表面活性剂浓度的增大出现持续减小的趋势。并且在相同浓度下,皂角苷和TritonX-100组成的混合表面活性剂的增溶能力比单独使用非离子表面活性剂Triton X-100强。同样在混合表面活性剂的协同增溶作用下,菲在水和土壤间的分配系数随着表面活性剂浓度的增加出现持续减小的趋势。  相似文献   
65.
以石墨电极为阴极、钌铱电极为阳极,建立了动态电化学应器用以处理硝基苯模拟废水。考察了水力停留时间、电流密度、电解质浓度和初始pH等因素对硝基苯去除率、苯胺生成率和库伦效率的影响规律,从能耗角度探讨了动态处理方式的优势及其原因。结果表明:动态处理效果明显优于静态处理。当水力停留时间为1 min,电流密度为15 mA·cm-2,电解质浓度为0.05 mol·L-1时,反应20 min硝基苯转化为苯胺的库伦效率为4.15%,比相似条件下的静态处理效果增大2.58倍;反应60 min去除硝基苯和生成苯胺所需能耗分别为10.09 kWh·kg-1和19.53 kWh·kg-1,比静态分别减少45.22%和62.09%;反应120 min硝基苯去除率可达97.3%,苯胺生成率达53.1%,比静态分别提高22.8%和39.2%。  相似文献   
66.
皂角苷络合洗脱污灌土壤中重金属的研究   总被引:6,自引:0,他引:6  
选择白银污灌土样为供试样品,采用振荡离心法研究了生物表面活性剂皂角苷(saponin)在不同浓度、pH值和离子强度条件下对供试土样中重金属的解吸影响,并采用Tessier法对解吸前后土样中的重金属形态进行了测定.结果显示,随皂角苷浓度增加,重金属解吸率随之增加,在皂角苷浓度为3%时,Cu、Cd、Pb、Zn解吸率分别达到43.87%、95.11%、83.54%和20.34%,而水及合成表面活性剂单独冲洗对重金属解吸率最大不超过5%;并且发现随土壤pH值增加,重金属解吸率逐渐减小;离子强度对Pb、Zn影响不大,而Cu、Cd随离子强度增大解吸率减小.比较冲洗前后重金属形态的变化,发现Cu、Cd、Pb、Zn元素的可溶态、碳酸盐结合态减少均达50%以上,Pb残渣态也减少60%左右,并且重金属氧化物结合态和有机态含量也有减少.说明皂角苷与重金属形成稳定的可溶性络合物,大大降低了土壤对重金属的吸附,从而降低了土壤中重金属的毒性和生物可利用性,表明皂角苷对污灌土样中重金属具有较好的淋洗去除效果.  相似文献   
67.
研究了皂角苷(1种生物表面活性剂)和腐殖酸(1种类表面活性物质)对微生物降解蒽的影响,并与Tween-80(1种化学表面活性剂)对蒽的增溶及促进微生物降解的作用进行了对比.结果表明,在不加任何表面活性物质时,微生物需要7d产生足够的糖脂使葸溶解,并发生微生物降解.皂角苷、腐殖酸和Tween-80均能较大程度的加速葸的降解,而且在相同条件下皂角苷及腐殖酸的效果明显优于Tween-80.腐殖酸及皂角苷大大缩短了微生物降解葸的时间,在2~4d内蒽的降解率可达到98%.同时,发现腐殖酸的浓度、葸的初始浓度均影响着蒽的微生物降解速率.  相似文献   
68.
氧化亚氮的释放已经成为了一个全球性的环境问题,水体中N2O的释放量会随着氮含量的增加而增加.本文通过微宇宙系统的构建,分析氮的转化过程和氮转化基因的变化,并结合结构方程模型分析了温度、氨氮含量对水体N2O释放的贡献.研究结果发现氨氧化古菌和反硝化细菌丰度均与N2O释放呈正相关,表明水体中的硝化和反硝化作用都会造成N2O的释放.氨氮浓度的升高并不直接促进N2O的释放,而温度和通过硝化作用产生的硝态氮对N2O的释放有促进作用.此外,硝化速率通过促进亚硝态氮和反硝化菌的丰度而间接地促进N2O的释放.  相似文献   
69.
GC/MS法分析焦化废水中微量有机污染物   总被引:7,自引:0,他引:7  
介绍了GC/MS联用仪对废水中微量有机污染物进行分离定性、定量的实验方法 ,并通过对实验结果的分析 ,阐述了活性污泥法对焦化废水有机污染物的去除效果  相似文献   
70.
国内外地下水抗生素的研究主要集中于抗生素的污染特征,而较少关注地下水中抗生素的生态风险及其与环境因子的相关性.鉴于此,选取石家庄市地下水环境为研究对象,应用超高效液相色谱串联质谱法(HPLC-MS)分析地下水中典型抗生素——喹诺酮类(QNs)浓度,研究QNs抗生素的生态风险,并建立QNs浓度与典型环境因子的相关性.结果表明:①石家庄地下水中QNs抗生素以环丙沙星(CIP)、依诺沙星(ENO)和氟甲喹(FLU)为主,其检出率分别为75.0%、80.0%和100%;②QNs抗生素浓度范围为3.02~98.5 ng·L-1;就空间分布而言,QNs浓度在S4处最高(98.5 ng·L-1),而在S19处最低(3.02 ng·L-1);③相关性分析结果表明,温度(T)、化学需氧量(COD)、总溶解固体(TDS)、菌落总数(BCTC)和pH与QNs相关性显著(P<0.01或P<0.05);④就生态风险的空间分布特征而言,S4为高风险区,其余各点为中低风险区;就QNs抗生素种类而言,除CIP处于中高风险水平,其余QNs处于中低风险水平.鉴于此,为了保障石家庄地下水环境安全,需进一步加强地下水中抗生素的风险管控.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号