首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   1篇
  国内免费   29篇
安全科学   14篇
废物处理   54篇
环保管理   55篇
综合类   88篇
基础理论   128篇
污染及防治   288篇
评价与监测   84篇
社会与环境   40篇
灾害及防治   8篇
  2023年   51篇
  2022年   98篇
  2021年   88篇
  2020年   21篇
  2019年   29篇
  2018年   36篇
  2017年   28篇
  2016年   41篇
  2015年   19篇
  2014年   35篇
  2013年   70篇
  2012年   23篇
  2011年   27篇
  2010年   23篇
  2009年   12篇
  2008年   24篇
  2007年   22篇
  2006年   17篇
  2005年   14篇
  2004年   12篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   9篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
排序方式: 共有759条查询结果,搜索用时 15 毫秒
101.
The distribution and composition of hydrocarbons in sediment from the Fladen Ground oilfield in the northern North Sea have been investigated. The total PAH concentrations (2- to 6-ring parent and alkylated PAHs, including the 16 US EPA PAHs) in sediments were relatively low (<100 microg kg(-1) dry weight). The PAH, the Forties crude and diesel oil equivalent concentrations were generally higher in sediment of fine grain size and higher organic carbon concentration. PAH distributions and concentration ratios indicated a predominantly pyrolytic input, being dominated by the heavier, more persistent, 5- and 6-ring compounds, and with a high proportion of parent PAHs. The n-alkane profiles of a number of the sediments contained small, high boiling point, UCMs, indicative of weathered oil arising from a limited petrogenic input. The geochemical biomarker profiles of the sediments that contained UCMs showed a small bisnorhopane peak and a high proportion of norhopane relative to hopane, indicating that there was contamination from both Middle Eastern and North Sea oils. Therefore contamination was not directly as a result of oil exploration activity in the area. The most likely source of petrogenic contamination was from general shipping activity.  相似文献   
102.
Bacterial diversity of full scale rotary drum composter from biodegradable organic waste samples were analyzed through two different approaches, i.e., Culture dependent and independent techniques. Culture-dependent enumerations for indigenous population of bacterial isolates mainly total heterotrophic bacteria (Bacillus species, Pseudomonas species and Enterobacter species), Fecal Coliforms, Fecal Streptococci, Escherichia coli, Salmonella species and Shigella species showed reduction during the composting period. On the other hand, Culture-independent method using PCR amplification of specific 16S rRNA sequences identified the presence of Acinetobacter species, Actinobacteria species, Bacillus species, Clostridium species, Hydrogenophaga species, Butyrivibrio species, Pedobacter species, Empedobactor species and Flavobacterium species by sequences clustering in the phylogenetic tree. Furthermore, correlating physico-chemical analysis of samples with bacterial diversity revealed the bacterial communities have undergone changes, possibly linked to the variations in temperature and availability of new metabolic substrates while decomposing organics at different stages of composting.  相似文献   
103.
104.
Environmental Chemistry Letters - Globally, 150–170 billion cubic metres of gas are being flared annually from petroleum refineries, petrochemical industries and from landfills. In this...  相似文献   
105.
Environmental Science and Pollution Research - The objective of this study is to contribute to the existing debate of green economic growth by empirically investigating the role of cleaner energy...  相似文献   
106.
107.
Environmental Science and Pollution Research - Natural hazards and severe weather events are a matter of serious threat to humans, economic activities, and the environment. Flash floods are one of...  相似文献   
108.

One of the major disadvantages of micropiles is their low lateral stiffness and flexural rigidity due to the small diameter. This limitation can be handled in current practice, by installing the micropile with inclined condition or providing a steel casing. Additional steel casings will increase the lateral load capacity of micropiles but increase the project cost as well. Thus, inclination of micropile which is relatively simple and cheap is recommended. In this paper, a comprehensive numerical analysis is conducted on the behavior of micropiled rafts installed with inclined condition under combined vertical and lateral loading. A FEM calibrated against full-scale axial and lateral field tests is used to conduct the analysis. The soil profile is soft clay soil underlain by a layer of dense sand. The study investigates the impact of several parameters which are as follows: magnitude of vertical loading, reinforcement type, inclination angle of micropiles, and number of inclined micropiles. The study reveals that increasing vertical loads causes continuous decrease in the lateral load capacity of micropiled rafts. When all micropiles installed are inclined, the positively inclined micropiles carry 79–86% of the total lateral load carried by micropiles, whereas the negatively inclined ones carry 14–21%. Inclined micropiles offer greater lateral load sharing ratio (αh) than that of vertical ones, largest at θ = 45°. The effect of micropile reinforcement on improving the lateral performance is low compared to the effect of micropile inclination angle.

  相似文献   
109.

The world is experiencing an energy crisis and environmental issues due to the depletion of fossil fuels and the continuous increase in carbon dioxide concentrations. Microalgal biofuels are produced using sunlight, water, and simple salt minerals. Their high growth rate, photosynthesis, and carbon dioxide sequestration capacity make them one of the most important biorefinery platforms. Furthermore, microalgae's ability to alter their metabolism in response to environmental stresses to produce relatively high levels of high-value compounds makes them a promising alternative to fossil fuels. As a result, microalgae can significantly contribute to long-term solutions to critical global issues such as the energy crisis and climate change. The environmental benefits of algal biofuel have been demonstrated by significant reductions in carbon dioxide, nitrogen oxide, and sulfur oxide emissions. Microalgae-derived biomass has the potential to generate a wide range of commercially important high-value compounds, novel materials, and feedstock for a variety of industries, including cosmetics, food, and feed. This review evaluates the potential of using microalgal biomass to produce a variety of bioenergy carriers, including biodiesel from stored lipids, alcohols from reserved carbohydrate fermentation, and hydrogen, syngas, methane, biochar and bio-oils via anaerobic digestion, pyrolysis, and gasification. Furthermore, the potential use of microalgal biomass in carbon sequestration routes as an atmospheric carbon removal approach is being evaluated. The cost of algal biofuel production is primarily determined by culturing (77%), harvesting (12%), and lipid extraction (7.9%). As a result, the choice of microalgal species and cultivation mode (autotrophic, heterotrophic, and mixotrophic) are important factors in controlling biomass and bioenergy production, as well as fuel properties. The simultaneous production of microalgal biomass in agricultural, municipal, or industrial wastewater is a low-cost option that could significantly reduce economic and environmental costs while also providing a valuable remediation service. Microalgae have also been proposed as a viable candidate for carbon dioxide capture from the atmosphere or an industrial point source. Microalgae can sequester 1.3 kg of carbon dioxide to produce 1 kg of biomass. Using potent microalgal strains in efficient design bioreactors for carbon dioxide sequestration is thus a challenge. Microalgae can theoretically use up to 9% of light energy to capture and convert 513 tons of carbon dioxide into 280 tons of dry biomass per hectare per year in open and closed cultures. Using an integrated microalgal bio-refinery to recover high-value-added products could reduce waste and create efficient biomass processing into bioenergy. To design an efficient atmospheric carbon removal system, algal biomass cultivation should be coupled with thermochemical technologies, such as pyrolysis.

  相似文献   
110.
Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L–L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号