首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   5篇
  国内免费   2篇
安全科学   9篇
废物处理   23篇
环保管理   28篇
综合类   26篇
基础理论   54篇
环境理论   1篇
污染及防治   88篇
评价与监测   62篇
社会与环境   14篇
灾害及防治   1篇
  2023年   4篇
  2022年   18篇
  2021年   20篇
  2020年   4篇
  2019年   6篇
  2018年   14篇
  2017年   16篇
  2016年   19篇
  2015年   11篇
  2014年   12篇
  2013年   18篇
  2012年   7篇
  2011年   18篇
  2010年   23篇
  2009年   19篇
  2008年   10篇
  2007年   16篇
  2006年   14篇
  2005年   12篇
  2004年   4篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  1999年   6篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有306条查询结果,搜索用时 93 毫秒
141.
142.
Irrigated agriculture is a major sector of agricultural economy where high value crops are grown with substantial input of fertilizers and pesticides. High concentrations of nitrate and pesticides have been observed in ground water beneath irrigated areas in humid regions, where irrigation is practiced on sandy soils that have low water-holding capacity. Data from these areas indicate that irrigation wells are typically screened in the bottom part of the aquifer (which contain coarser deposits) whereas the domestic wells are screened just below the water table. Monitoring results from several irrigated areas have shown the stratification of dissolved inorganic and organic chemicals in the aquifer. Nitrate in such systems is typically highest near the surface. This has serious health implications for the rural population that relies upon shallow ground water for drinking. Current environmental policy towards pollution reduction focuses on improved management practices to reduce the loading of the chemicals to ground water. However, an engineering issue, dealing with the design of the irrigation and domestic wells has not been addressed. A design modification for the irrigation and domestic wells can reduce the risk of high nitrate ground water being pumped by domestic wells. A proposal to convert a deep vertical irrigation well to a series of small-capacity shallow vertical wells or a large-capacity horizontal well and slight deepening of the domestic wells was examined through simulations. This can reduce the nitrate concentration of ground water in domestic wells dramatically and use the high nitrate water for crop irrigation.  相似文献   
143.
Irrigated agriculture is a major sector of agricultural economy where high value crops are grown with substantial input of fertilizers and pesticides. High concentrations of nitrate and pesticides have been observed in ground water beneath irrigated areas in humid regions, where irrigation is practiced on sandy soils that have low water-holding capacity. Data from these areas indicate that irrigation wells are typically screened in the bottom part of the aquifer (which contain coarser deposits) whereas the domestic wells are screened just below the water table. Monitoring results from several irrigated areas have shown the stratification of dissolved inorganic and organic chemicals in the aquifer. Nitrate in such systems is typically highest near the surface. This has serious health implications for the rural population that relies upon shallow ground water for drinking. Current environmental policy towards pollution reduction focuses on improved management practices to reduce the loading of the chemicals to ground water. However, an engineering issue, dealing with the design of the irrigation and domestic wells has not been addressed. A design modification for the irrigation and domestic wells can reduce the risk of high nitrate ground water being pumped by domestic wells. A proposal to convert a deep vertical irrigation well to a series of small-capacity shallow vertical wells or a large-capacity horizontal well and slight deepening of the domestic wells was examined through simulations. This can reduce the nitrate concentration of ground water in domestic wells dramatically and use the high nitrate water for crop irrigation.  相似文献   
144.
A chemical analysis of suspended particulate matter (SPM) collected near the world famous Taj Mahal monument at Agra has been carried out. SPM samples collected on glass fibre filters were analysed for water-soluble sulphate, nitrate, chloride and ammonium ions. The data were derived from over 200 samples (each of 24 h), collected continuously during the winter periods (October through to March) of 1984-1985 and 1985-1986. The SO(4)(2-) and NO(3)(-) components are acidic in nature causing corrosion and effects on visibility, and so were studied in more detail. Mean values for SO(4)(2-) and NO(3)(-) derived from two-year data are 7.2 microg m(-3) and 8.2 microg m(-3), respectively. The SO(4)(2-)/SO(2) and NO(3)(-)/NO(2) ratiosobserved indicate faster conversion of SO(2) to SO(4)(2-) than NO(2) to NO(3)(-), the maximum levels being in January. Thus, both SO(4)(2-) and NO(3)(-) results appear to offer more promising indices of air quality than do SPM data alone.  相似文献   
145.
Sinha S  Gupta AK 《Chemosphere》2005,61(8):1204-1214
The plants of Sesbania cannabina Ritz grown on different amendments of fly ash (FA), have shown a high accumulation of metals (Fe, Mn, Zn, Cu, Pb and Ni). The highest accumulation of Fe the and lowest level of Ni were recorded in these plants. The different amendments of fly ash with garden soil (GS) were extracted with DTPA and the levels of metals were found to be decreased with an increase in fly ash application ratio from 10% to 50% FA. The analysis of the results showed an increase in the level of malondialdehyde (MDA) content of the roots for all the exposure periods. The maximum increases of 136% (roots) and 120% (leaves) were observed in MDA content at 100% FA after 30 d of growth of the plant, compared to GS. The level of antioxidants was found to increase for all the exposure periods in the roots of the plants to combat metal stress. At 30 d, the maximum increase of 57% (ascorbic acid) and 78% (free proline) was observed in the roots of the plants grown on 100% and 10% FA, respectively, as compared to their respective GS. At 90 d, a maximum increase of 42% (cysteine) and 117% (NPSH) was recorded in the roots of the plants grown on 25% and 100% FA, respectively, as compared to their respective GS. In leaves, a significant increase in antioxidants i.e. cysteine, NPSH and free proline content was recorded after 30 d, whereas no such trend was observed for the rest of the exposure periods. The chlorophyll and carotenoid contents increased with an increase in the FA amendment ratio from 10% to 50% FA for all the exposure periods as compared to GS. In both roots and leaves, the level of protein content increased in all the amendments and 100% FA at 30 d as compared to GS. Thus, there is a balance in the level of MDA content and level of antioxidants in the plants at 90 d. In view of its tolerance, the plants may be used for phytoremediation of metals from fly ash contaminated sites and suitable species for plantation on fly ash land fills.  相似文献   
146.
Residues reclaimed from a municipal solid waste (MSW) landfill were characterized for the concentrations of a number of heavy metals. The residue fractions analyzed included a fine fraction (<0.425 mm), an intermediate fraction (>0.425 and <6.3 mm) and a fraction consisting of paper products that could ultimately degrade to a smaller size. The intermediate fraction appeared to be organic in nature, while the fine fraction was more soil-like. In general, the metal concentrations were greatest in the intermediate fraction and lowest in the fine fraction. The effect of sample age on the elemental content was also investigated. The concentrations of several elements were greater in older samples (sample approximately 8 years in age) when compared to newer samples (sample approximately 3 years in age). Limitations associated with the land application of residual soil (composed of the fine and intermediate fractions) were assessed by comparing measured concentrations to regulatory threshold values. In general, most metal concentrations were below regulatory thresholds for use in unrestricted settings. At the concentrations measured, however, several elements might limit reuse options, depending on which regulatory threshold serves as a benchmark. Elevated concentrations of arsenic presented the greatest limitation with respect to common US thresholds while elevated cadmium concentrations presented the greatest limitation when compared to UK thresholds. The source of the arsenic was determined to be the waste, not the cover soil.  相似文献   
147.
Malla G  Bhatia A  Pathak H  Prasad S  Jain N  Singh J 《Chemosphere》2005,58(2):141-147
Mitigation of methane (CH4) and nitrous oxide (N2O) emissions from soil is important to reduce the global warming. Efficacy of five nitrification inhibitors, i.e. neem (Azadirachta melia) cake, thiosulphate, coated calcium carbide, neem oil coated urea and dicyandiamide (DCD) and one urease inhibitor, hydroquinone, in mitigating N2O and CH4 emissions from fertilized soil was tested in rice-wheat system in the Indo-Gangetic plains. The closed chamber technique was used for the collection of gas samples, which were analyzed using gas chromatography. Reduction in N2O emission on the application of nitrification/urease inhibitors along with urea ranged from 5% with hydroquinone to 31% with thiosulphate in rice and 7% with hydroquinone to 29% with DCD in wheat crop. The inhibitors also influenced the emission of CH4. While application of neem coated urea, coated calcium carbide, neem oil and DCD reduced the emission of CH4; hydroquinone and thiosulphate increased the emission when compared to urea alone. However, the global warming potential was lower with the inhibitors (except hydroquinone) as compared to urea alone, suggesting that these substances could be used for mitigating greenhouse gas emission from the rice-wheat systems.  相似文献   
148.
Nitrous oxide (N2O) accounts for 5%of the total enhanced greenhouse effect and responsiblefor the destruction of the stratospheric ozone. The rice-wheat cropping system occupying 26 million ha ofproductive land in Asia could be a major source ofN2O as most of the fertilizer N in this region isconsumed by this system. Emission of N2O asinfluenced by application of urea, urea plus farm yardmanure (FYM), and urea plus dicyandiamide (DCD), anitrification inhibitor, was studied in rice-wheatsystems of Indo-Gangetic plains of India. Total emissionof N2O-N from the rice-wheat systems varied between654 g ha-1 in unfertilized plots and 1570 g ha-1 in urea fertilized plots. Application of FYM and DCDreduced emission of N2O-N in rice. The magnitude ofreduction was higher with DCD. In wheat also N2O-Nemission was reduced by DCD. FYM applied in rice had noresidual effect on N2O-N emission in wheat. In riceintermittent wetting and drying condition of soilresulted in higher N2O-N emission than that ofsaturated soil condition. Treatments with 5 irrigationsgave higher emissions in wheat than those with 3irrigations. In rice-wheat system, typical of a farmer'sfield in Indo-Gangetic plains, where 240 kg N isgenerally applied through urea, N2O-N emission is1570 g ha-1 (0.38% of applied N) and application ofFYM and DCD reduced it to 1415 and 1096 g ha-1,respectively.  相似文献   
149.
The measurements of aircraft-induced noise levels in some residential areas in the capital city of India were carried out in the month of April and May, 1996. Four areas were chosen which were located underneath the flight path. It has been found that average increase in noise levels over and above the background levels is more than 20 dBA except in case of the most distant site where it is 11 dBA. A good correlation has been found between average peak noise levels (dBA) and the population response in terms of annoyance.  相似文献   
150.
In India, rain water and atmospheric aerosols are observed to bealkaline in nature due to the influence of soil-derivedparticles which are rich in components like Ca and Mg. Thesecomponents increase the neutralization potential of rain waterand have a greater influence at rural site compared to urbansite. However, if there are continuous rains, the concentrationof crustal components becomes lower resulting in lower pH ofrain water. Unlike the characteristics of rain water oncontinent, the pH of rain water has been observed to be acidicin all the events over the Indian Ocean during Pre-campaigns ofIndian Ocean Experiment (INDOEX). The possible reason for acidicrains over Indian Ocean could be the anthropogenic contributionfrom continent transported by NE winds coming towards the oceanduring this period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号