首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  国内免费   2篇
废物处理   1篇
综合类   6篇
基础理论   1篇
污染及防治   9篇
评价与监测   2篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
排序方式: 共有19条查询结果,搜索用时 505 毫秒
11.
Local fluoride contamination and bacterial infections in potable water have dangerous effects on the human body and are today a global concern. In this study, we have synthesized a pH-responsive bifunctional biopolymer nanocomposite (HAZ) of humic acid with incorporating aluminum zirconium bimetallic oxide by deep freeze–drying method. Fast nucleation and interconnection of nanoparticles form a highly porous network because of sublimation of frozen HAZ. This duo nanocomposite has efficiently worked for fluoride removal and showed potent antibacterial activity against the Escherichia coli Gram-negative and Staphylococcus aureus Gram-positive bacteria. The X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the hydroxyl groups act as a pivot in the ion exchange process of adsorption, each element of bimetallic oxide primarily takes part in the adsorption mechanism. The maximum adsorption capacity of the adsorbent was 180.62 mg/g at pH seven. Thermodynamic parameters like Gibbs free energy change (ΔG0), entropy (ΔS0), and enthalpy (ΔH0) indicate that the process was endothermic, feasible, and taken place by a chemisorption mechanism. This is the first novel freeze–dried bifunctional biopolymer nanocomposite composed of humic acid natural polymer incorporated with Al–Zr metal oxide, and it exhibited three times higher adsorption efficacy with excellent antibacterial action at a concentration of 5 µg/mL of the nanocomposite.  相似文献   
12.
Environmental Science and Pollution Research - Developing therapies for neurodegenerative diseases are challenging because of the presence of blood–brain barrier and Alzheimer being one of...  相似文献   
13.
Environmental Science and Pollution Research - Nutrition plays a significant role in the prevention and treatment of common diseases. Some superb dietary choices such as functional foods and...  相似文献   
14.
15.
Journal of Material Cycles and Waste Management - Improper management of solid waste creates health problems and degrades the environment (air, water, and soil). The Indian state Uttarakhand is...  相似文献   
16.
Wastewater released from textile industries causes water pollution, and it needs to be treated before discharge to the environment by cost effective technologies. Solar photocatalysis is a promising technology for the treatment of dye wastewater. The Ag@TiO2 nanoparticles comprising of Ag core and TiO2 shell (Ag@TiO2) have unique photocatalytic property of inhibition of electron–hole recombination and visible light absorption, which makes it a promising photocatalyst for use in solar photocatalysis and with higher photocatalytic rate. Therefore, in the present work, the Ag@TiO2 nanoparticles synthesized by one pot method with postcalcination step has been used for the degradation of Acid Yellow-17 (AY-17) dye under solar light irradiation. The Ag@TiO2 nanoparticles were characterized using thermogravimetric–differential thermal analysis, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The catalyst has been found to be very effective in solar photocatalysis of AY-17, as compared to other catalysts. The effects of pH, catalyst loading, initial dye concentration, and oxidants on photocatalysis were also studied. The optimized parameters for degradation of AY-17 using Ag@TiO2 were found to be pH?3, dye/catalyst ratio of 1:10 (g/g), and 2 g/L of (NH4)2S2O8 as oxidant. Efficient decolorization and mineralization of AY-17 was achieved. The kinetics of color, total organic carbon, and chemical oxygen demand removal followed the Langmuir–Hinshelwood model. Ag@TiO2 catalyst can be reused thrice without much decline in efficiency. The catalyst exhibited its potential as economic photocatalyst for treatment of dye wastewater.  相似文献   
17.
The plants of Spinacia oleracea L. grown on contaminated soil (CS) and different amendments of tannery sludge (TS) have shown high accumulation of metals in its edible part. The accumulation of toxic metal (Cr) in the leaves of the plants grown on CS was recorded as 40.67 microgg(-1)dw. However, the leaves of the plants grown on 100% TS have accumulated about two times (70.80 microgg(-1)dw) higher Cr than the 10% TS (31.21 microgg(-1)dw). Among growth parameters, the root length was more affected at 90 d than the shoot length, number of leaves and leaf area. The study of scanning electron micrographs showed 29.31% increase in stomatal length in the leaves of the plants grown on CS as compared to garden soil (GS), which served as control, however it decreased in the plants grown on higher amendments of TS. The decrease in MDA content at initial period of exposure and lower amendment was recorded in the leaves, whereas, significant increase (>10% TS onward) was observed with increase in tannery sludge ratio at 90 d as compared to GS. A coordinated increase in all the studied antioxidants (cysteine, non-protein thiol, ascorbic acid, carotenoid contents) was found up to 75 d of growth. At 90 d, most of the antioxidant decreased as compared to 75 d causing oxidative stress as evidenced by increased level of lipid peroxidation and decreased chlorophyll and protein contents. Maximum increase of 181.43% in MDA content and maximum decrease of 53.69% in total chlorophyll content was recorded in the leaves of the plants grown on 100% TS after 90 d of growth. The plants grown on CS have shown an increase in shoot length, number of leaves, leaf area, photosynthetic pigments and protein contents and in all the studied antioxidants. Thus, these plants are able to combat stress involving defense mechanism, resulting in healthy growth of the plants. The results are well coordinated as there is no change in the MDA content as compared to the plants grown on GS. In view of high Cr accumulation in edible part of S. oleracea grown on CS after irrigation with tap water, it is not advisable to use these plants for edible purposes. Summing up, it is recommended that the level of metals in the edible part should be checked instead of healthy growth as deciding parameter for consumption. It is demonstrated through this study that metal enriched plants have detoxification mechanism and grow well on organic matter enriched contaminated soil.  相似文献   
18.
19.
In this study, an ecofriendly and economically viable waste management approach have been attempted towards the biosynthesis of agriculturally important nanoparticles from jarosite waste. Aspergillus terreus strain J4 isolated from jarosite(waste from Debari Zinc Smelter,Udaipur, India), showed good leaching efficiency along with nanoparticles(NPs) formation under ambient conditions. Fourier-transform infrared spectroscopy(FT-IR) and transmission electron microscopy(TEM) confirmed the formation of NPs. Energy dispersive X-ray spectroscopy(EDX analysis) showed strong signals for zinc, iron, calcium and magnesium,with these materials being leached out. TEM analysis and high resolution transmission electron microscopy(HRTEM) showed semi-quasi spherical particles having average size of 10‐50 nm. Thus, a novel biomethodology was developed using fungal cell-free extract for bioleaching and subsequently nanoconversion of the waste materials into nanostructured form. These biosynthesized nanoparticles were tested for their efficacy on seed emergence activity of wheat(Triticum aestivum) seeds and showed enhanced growth at concentration of 20 ppm. These nanomaterials are expected to enhance plant growth properties and being targeted as additives in soil fertility and crop productivity enhancement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号