首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2168篇
  免费   17篇
  国内免费   7篇
安全科学   52篇
废物处理   149篇
环保管理   142篇
综合类   255篇
基础理论   463篇
环境理论   1篇
污染及防治   757篇
评价与监测   212篇
社会与环境   158篇
灾害及防治   3篇
  2023年   23篇
  2022年   57篇
  2021年   63篇
  2020年   27篇
  2019年   36篇
  2018年   64篇
  2017年   72篇
  2016年   113篇
  2015年   67篇
  2014年   114篇
  2013年   217篇
  2012年   129篇
  2011年   168篇
  2010年   92篇
  2009年   68篇
  2008年   143篇
  2007年   150篇
  2006年   106篇
  2005年   87篇
  2004年   57篇
  2003年   48篇
  2002年   58篇
  2001年   36篇
  2000年   19篇
  1999年   18篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   14篇
  1994年   8篇
  1993年   11篇
  1992年   3篇
  1991年   6篇
  1990年   10篇
  1989年   3篇
  1988年   6篇
  1983年   3篇
  1975年   2篇
  1967年   4篇
  1966年   2篇
  1964年   8篇
  1963年   7篇
  1962年   7篇
  1960年   5篇
  1959年   2篇
  1958年   8篇
  1957年   3篇
  1956年   4篇
  1955年   2篇
  1943年   2篇
排序方式: 共有2192条查询结果,搜索用时 0 毫秒
461.
462.
463.
464.
To participate in the potential market for carbon credits based on changes in the use and management of the land, one needs to identify opportunities and implement land-use based emissions reductions or sequestration projects. A key requirement of land-based carbon (C) projects is that any activity developed for generating C benefits must be additional to business-as-usual. A rule-based model was developed and used that estimates changes in land-use and subsequent carbon emissions over the next twenty years using the Eastern Panama Canal Watershed (EPCW) as a case study. These projections of changes in C stocks serve as a baseline to identify where opportunities exist for implementing projects to generate potential C credits and to position Panama to be able to participate in the emerging C market by developing a baseline under scenarios of business-as-usual and new-road development. The projections show that the highest percent change in land use for the new-road scenario compared to the business-as-usual scenario is for urban areas, and the greatest cause of C emission is from deforestation. Thus, the most effective way to reduce C emissions to the atmosphere in the EPCW is by reducing deforestation. In addition to affecting C emissions, reducing deforestation would also protect the soil and water resources of the EPCW. Yet, under the current framework of the Clean Development Mechanism (CDM), only credits arising from reforestation are allowed, which after 20 years of plantation establishment are not enough to offset the C emissions from the ongoing, albeit small, rate of deforestation in the EPCW. The study demonstrates the value of spatial regional projections of changes in land cover and C stocks: The approach helps a country identify its potential greenhouse gas (GHG) emission liabilities into the future and provides opportunity for the country to plan alternative development pathways. It could be used by potential project developers to identify which types of projects will generate the largest C benefits and provide the needed baseline against which a project is then evaluated. Spatial baselines, such as those presented here, can be used by governments to help identify development goals. The development of such a baseline, and its expansion to other vulnerable areas, well positions Panama to respond to the future market demand for C offsets. It is useful to compare the projected change in land cover under the business-as-usual scenario to the goals set by Law 21 for the year 2020. Suggested next steps for analysis includeusing the modeling approach to exploreland-use, C dynamics and management ofsecondary forests and plantations, soilC gains or losses, sources ofvariability in the land use and Cstock projections, and other ecologicalimplications and feedbacks resulting fromprojected changes in land cover.  相似文献   
465.
A comparison of shell growth in Donax trunculus (collected between 1988 and 1990 of Cullera, Spain) has been carried out using an analysis of cohort progression in monthly length frequency distributions, hyaline surface shell growth rings and internal microgrowth bands. In the Mediterranean there are two periods of recruitment of D. trunculus, one in the summer (July to September) and the other in winter (December to February). Clams recruited to the population in winter display a clear cessation in shell growth during the following summer which may possibly be correlated with spawning, whereas individuals of the summer recruited cohort show no growth cessation the following summer and continue to deposit shell during this period. The normally opaque shell of D.trunculus reveals the presence of translucent hyaline growth rings when the shells are backlit by a strong light source, and these have been shown to be laid down in the shell during summer months. Formation of a hyaline ring is accompanied by a narrowing of the microgrowth patterns present in shell sections. Both the hyaline rings and the length frequency distributions have been used to determine the age and growth rate of D. trunculus.  相似文献   
466.
Blooms of the marine prymnesiophyte genus Phaeocystis link the oceanic and atmospheric compartments of the carbon and sulfur cycles. Modeling the fluxes of dimethylsulfide from the ocean to the atmosphere has been limited due to a lack of information on functional responses to environmental variables. In this study, the light-dependence of extracellular carbon production and dimethyl sulfide (DMS) production by non-axenic polar clones of Phaeocystis spp. was examined at different growth stages. Comparative experiments were run with non-axenic arctic clones of the diatoms Thalassiossira nordenskioeldii and Skeletonema costatum. A large portion of carbon incorporated by the colonial stage of Phaeocystis spp. is released extracellularly, in particular in stationary colonies. This extracellular production can be modeled as a function of irradiance, as for carbon incorporation. In Phaeocystis spp., cellular and extracellular carbon incorporation represent different uptake rates, indicating the formation of two distinct carbon pools. The release of extracellular carbon by polar Phaeocystis spp. was not a constant fraction of total production over the irradiance range used. We observed little extracellular carbon production by cells at high irradiance, and maximal rates were observed at intermediate irradiance. Newly incorporated carbon that accumulates in the mucilage of the colonial stage of antarctic Phaeocystis sp. during photosynthesis was not reutilized for cellular growth during the dark period, as observed for temperate clones. In contrast, only a minor fraction of the radiocarbon incorporated by the diatoms was released extracellularly for all growth stages. The production of DMS was an order of magnitude higher for Phaeocystis spp. than for diatoms. The chlorophyll-specific production of DMS and DMSP (dimethylsulphoniopropionate, the precursor to DMS) by Phaeocystis spp. showed a hyperbolic response to irradiance, while arctic diatoms (weak or non-producers of DMS), on the other hand, did not show any light-dependency of DMS production. An inverse relationship between DMS and DMSP production in stationary clones of arctic P. pouchetii was observed, but not for the exponentially growing antarctic clone. Stationary colonies also had higher DMS and dissolved DMSP production rates than exponentially growing ones. These relationships can be extrapolated to the field in areas where Phaeocystis spp. dominates.  相似文献   
467.
K. Véliz  M. Edding  F. Tala  I. Gómez 《Marine Biology》2006,149(5):1015-1024
The effects of exposure to ultraviolet radiation (UVR), 280–400 nm, in different life histories and development stages of the kelps, Lessonia nigrescens and L. trabeculata, collected in the south-east Pacific coast (30°S) were evaluated in the laboratory. Germination and viability (motile zoospores, settled spores), diameter of the primary cell of the gametophytes, percentage of female gametophytes, fertility and sporophytes production were measured after exposure to three radiation treatments (PAR; PAR + UVA; PAR + UVA + UVB). The effects of UVR in young sporophytes (diploid stage) were evaluated as changes in maximal quantum yield of chlorophyll fluorescence of photosystem II (PSII) (F v/F m). A significant decrease in all variables was observed for the treatment that included UVB (PAR + UVA + UVB) after 2 and 4 h of exposure, in relation to the control. The motile spores were more sensitive to UVR exposure compared to settled spores and gametophytes, suggesting that along with an increase in ontogenetic development; there is an increase in the tolerance to UVR. In addition, it was observed that early stages of the intertidal L. nigrescens were more tolerant to UVR compared to the subtidal L. trabeculata. These results allow initially to infer that UVR may be regarded as an important environmental factor influencing the upper limit of distribution of these species, mainly through its detrimental effects on the early stages of the life cycle.  相似文献   
468.
Growth, age and somatic production of the benthic predator Odontocymbiola magellanica were studied in Golfo Nuevo (42°S 65°W), on the South American Atlantic shelf. Stable oxygen isotope ratios confirmed semiannual formation of internal and external shell growth marks. Mean shell length (SL) of females was 115 and 112 mm for males, while population modal shell-free wet mass (SFWM) was 62.8 g. A Gompertz growth function (SL= 200 mm, K = 0.197, t 0 = 5.486) fitted 113 pairs of size-at-age data (12 shells) best. O. magellanica is a long-lived species, reaching up to 20 years of age. The maximum individual somatic production of 29.3 g SFWM per year is attained at 145 mm SL, which corresponds to about 12 years of age. The life span of this volutid seems to be twice compared with other large gastropods. O. magellanica is a valuable and exploitable resource regarding its large size and somatic production, but on the other hand, its slow growth, late maturity and direct development makes it extremely vulnerable to overexploitation.  相似文献   
469.
The development of the so-called late winter bloom in subtropical water was studied in an oceanic area north of the Canary Islands from January to May 2000. Zooplankton was sampled at short-term intervals (1–4 days) during the bloom (January–March), and biomass, indices of grazing (gut fluorescence) and metabolism (electron transfer system activity, ETS) were measured in four different size fractions (100–200, 200–500, 500–1000 and >1000 µm). During the bloom, ETS activity and gut fluorescence increased before the development of zooplankton biomass. At the end of February, the presence of an impressive cloud of dust formed in the Sahara desert was related to an increase in chlorophyll and small zooplankton a week later. The increments in biomass were the consequence of consumption by zooplankton as inferred from the indices of grazing and metabolism. Estimated grazing from gut fluorescence and gut evacuation rates during the period of study accounted for 55% of the assessed total ingestion from respiration and normal values of assimilation, showing the importance of the non-pigmented food in the diet of zooplankton in these waters. In contrast, the sharp decreases in zooplankton biomass observed during the bloom appeared during the dark period of the moon, the days in which the diel vertical migrants reach the shallower layers, in agreement with previous works in the area. Thus, the development of the late winter bloom in this region is suggested to be driven by the interplay between resource and consumer controls.Communicated by S.A. Poulet, Roscoff  相似文献   
470.
The present study reports the gametogenic cycle of the common octopus, Octopus vulgaris Cuvier, 1797 in the Atlantic coast of Andalusia between May 2001 and May 2002. A total of 673 specimens of total weight ranging from 30 to 3,732 g were analysed. The gonad development was defined by means of histological methods and gonadosomatic indexes. Four gametogenic stages were identified in males (I immature, II maturing, III mature, IV spawning) and in females (I immature, II maturing, III pre-spawning, IV spawning). The sex ratio obtained was not significantly different from 1:1 (P>0.01). Mature males were found during the whole year, September being the month when the highest rate of sexually active individuals occurred (48%). In females, the gametogenic cycle commenced in December and ended in November, and spawning occurred between April and October, with two maximum peaks in August and September (48% in each). Size at sexual maturity was 850 g of total body weight for males and 1,250 g of total body weight for females. Males mature earlier than females.Communicated by S.A. Poulet, Roscoff  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号