首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   33篇
  国内免费   8篇
安全科学   57篇
废物处理   46篇
环保管理   261篇
综合类   86篇
基础理论   268篇
环境理论   2篇
污染及防治   207篇
评价与监测   71篇
社会与环境   36篇
灾害及防治   8篇
  2023年   8篇
  2022年   16篇
  2021年   14篇
  2020年   6篇
  2019年   15篇
  2018年   22篇
  2017年   22篇
  2016年   29篇
  2015年   30篇
  2014年   28篇
  2013年   61篇
  2012年   61篇
  2011年   61篇
  2010年   39篇
  2009年   60篇
  2008年   70篇
  2007年   63篇
  2006年   58篇
  2005年   32篇
  2004年   45篇
  2003年   39篇
  2002年   37篇
  2001年   9篇
  2000年   16篇
  1999年   14篇
  1998年   16篇
  1997年   11篇
  1996年   14篇
  1995年   16篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   5篇
  1983年   8篇
  1982年   9篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1974年   3篇
  1957年   2篇
排序方式: 共有1042条查询结果,搜索用时 453 毫秒
591.
This essay comments and expands upon an emerging area of research, energy communication, that shares with environmental communication the fraught commitment to simultaneously study communication as an ordinary yet potentially transformative practice, and a strategic endeavour to catalyse change. We begin by defining and situating energy communication within ongoing work on the discursive dimensions of energy extraction, production, distribution, and consumption. We then offer three generative directions for future research related to energy transitions as communicative processes: analysing campaigns’ strategic efforts, critically theorizing energy’s transnational power dynamics, and theorizing the energy democracy movement.  相似文献   
592.
Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of ‘Continental Europe’. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50–100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40–50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.  相似文献   
593.
Much of the literature on the consequences of natural disasters has focused on their physical and psychological ramifications. Few researchers have considered how the impacts of a natural disaster can influence academic achievement. This study analyses data collected from nearly 300 students at a mid‐sized, private university in the northeast United States to determine if the effects of Cyclone Sandy in 2012 are associated with measures of academic achievement. The findings reveal that experiencing headaches after the event resulted in a higher likelihood of students suffering a loss of academic motivation. In addition, experiencing headaches and a loss of academic motivation were correlated with a lower grade point average (GPA) during the semester in which Sandy made landfall. However, the more direct effects of the superstorm, including displacement and a loss of power, did not have a significant bearing on academic achievement. Lastly, the paper examines the implications for higher education policy and future research.  相似文献   
594.
Some of the most fertile agricultural land in Atlantic Canada includes dykelands, which were developed from rich salt marshes along the Bay of Fundy through the construction of dykes. A 2-yr field experiment was conducted on dykeland soil to evaluate the effect of fertility treatments: source-separated municipal solid waste (SS-MSW) compost, solid manure, commercial fertilizer, and gypsum on (1) timothy/red clover forage productivity, (2) N, S, and other nutrients uptake, and (3) residual NO(3)-N and NH(4)-N in the soil profile. All fertility treatments increased dry matter yields from the two cuts each year relative to the control. Residual soil NO(3)-N and NH(4)-N concentrations in the fall of the second year decreased with depth, and beyond 20-cm depth were lower than 1 mg kg(-1). Gypsum application equivalent to 40 kg S ha(-1) increased dry matter yields and N uptake by forage, and increased soil Mehlich 3-extractable S, tissue S, and uptake of S, Ca, P, Cu, Fe, and Mn relative to the control. High rates of compost can provide sufficient N, S, and perhaps other nutrients to a perennial forage system under the cool wet climate of Atlantic Canada with no heavy metal enrichment of forage. However, the chemical N provided greater total N uptake than organic sources, except the high rate of compost, suggesting that the N availability from organic sources was not well synchronized with forage N demand. Municipal solid waste compost may also increase soil and forage tissue Na, which might be of concern.  相似文献   
595.
Recent and past studies have documented the prevalence of pyrethroid and organophosphate pesticides in urban and agricultural watersheds in California. While toxic concentrations of these pesticides have been found in freshwater systems, there has been little research into their impacts in marine receiving waters. Our study investigated pesticide impacts in the Santa Maria River estuary, which provides critical habitat to numerous aquatic, terrestrial, and avian species on the central California coast. Runoff from irrigated agriculture constitutes a significant portion of Santa Maria River flow during most of the year, and a number of studies have documented pesticide occurrence and biological impacts in this watershed. Our study extended into the Santa Maria watershed coastal zone and measured pesticide concentrations throughout the estuary, including the water column and sediments. Biological effects were measured at the organism and community levels. Results of this study suggest the Santa Maria River estuary is impacted by current-use pesticides. The majority of water samples were highly toxic to invertebrates (Ceriodaphnia dubia and Hyalella azteca), and chemistry evidence suggests toxicity was associated with the organophosphate pesticide chlorpyrifos, pyrethroid pesticides, or mixtures of both classes of pesticides. A high percentage of sediment samples were also toxic in this estuary, and sediment toxicity occurred when mixtures of chlorpyrifos and pyrethroid pesticides exceeded established toxicity thresholds. Based on a Relative Benthic Index, Santa Maria estuary stations where benthic macroinvertebrate communities were assessed were degraded. Impacts in the Santa Maria River estuary were likely due to the proximity of this system to Orcutt Creek, the tributary which accounts for most of the flow to the lower Santa Maria River. Water and sediment samples from Orcutt Creek were highly toxic to invertebrates due to mixtures of the same pesticides measured in the estuary. This study suggests that the same pyrethroid and organophosphate pesticides that have been shown to cause water and sediment toxicity in urban and agriculture water bodies throughout California, have the potential to affect estuarine habitats. The results establish baseline data in the Santa Maria River estuary to allow evaluation of ecosystem improvement as management initiatives to reduce pesticide runoff are implemented in this watershed.  相似文献   
596.
CREAMS-PADDY, a modified version of the field-scale CREAMS model, simulates the hydrologic, sediment, and nutrient cycles in paddy fields. The CREAMS-PADDY model was applied to estimate the effects of using wastewater for irrigation on nutrient loads from paddy fields in Republic of Korea. The model was calibrated and validated using data from two rice paddy fields. The coefficient of determination between observed and simulated total nitrogen and total phosphorus were 0.92 and 0.57, respectively, for the calibration period and 0.84 and 0.73 for the validation period. Simulations showed that when using wastewater for irrigation, the total nitrogen loads increased by 210% and total phosphorus by 1,270% when compared with conventional water irrigation. The total nitrogen and total phosphorus concentration in the ponded water increased by 254 and 534%, respectively, when compared with conventional water irrigation. The effect of reducing N and P fertilizer application rates by 10, 30, and 50% on nutrient loads exiting a paddy field were also simulated using the validated CREAMS-PADDY model. These simulations indicated that total phosphorus loads from the paddy were reduced only slightly by reducing the fertilizer, while total nitrogen loads were reduced by as much as 8.8, 16.6, and 24.4% when N ferlitizer rates were reduced by 10, 30, and 50%, respectively. An erratum to this article can be found at  相似文献   
597.
Selection of an appropriate species is a key element of effective ecological risk assessments (ERA), especially when site-specific field studies are to be employed. Great blue herons (GBH) possess several ideal characteristics of a receptor species for the assessment of bioaccumulative compounds in the environment, such as ease of study, high potential for exposure, widespread distribution, and territorial foraging behavior. Methodologies for assessing exposure and population health are described herein. As outlined, the collection of GBH eggs, GBH nestling blood, and adult GBH blood allows for the determination of contaminant concentrations in various GBH tissues, a top-down assessment, which can be done in conjunction with predicted dietary exposure, a bottom-up assessment, to support a multiple lines of evidence approach. Additionally, population parameters, such as productivity and survival, can also be measured to elucidate if the contaminant exposure may be causing population level effects. Over the course of two years, three GBH rookeries were monitored for productivity and nestling exposure. Nests were monitored from blinds and individually accessed at multiple time points to obtain measures of nestling health, band nestlings, and collect eggs and nestling plasma. Multiple nests could frequently be accessed by climbing one tree, resulting in minimal effort to obtain the necessary sample size. Additionally, 51 adult GBH, captured in their foraging areas, were banded, and provided a blood sample. With these samples, a statistical difference in tissue based exposure was identified between the reference and target area. Statistically significant differences were also identified between the upper and lower reaches of the target area, thereby identifying a range of doses geographically which could be correlated to specific measurement endpoints. The ability to identify a dose response greatly increases the ability of the dataset to determine causation, a key goal of such studies. Overall, the use of the described methods allowed for the collection of a statistically sufficient and ecologically relevant dataset with reasonable effort and minimal impact on GBH.  相似文献   
598.
An immense volume of tailings and tailings water is accumulating in tailings ponds located on mine leases in the oil sands area of Alberta, Canada. Oil sands mining companies have proposed to use tailings- and tailings water-amended lakes and wetlands as part of their mine remediation plans. Polycyclic aromatic hydrocarbons (PAHs) are substances of concern in oil sands tailings and tailings water. In this study, we determined concentrations of PAHs in sediments, insect larvae and adult insects collected in or adjacent to three groups of wetlands: experimental wetlands to which tailings or tailings water had been purposely added, oil sands wetlands that were located on the mine leases but which had not been experimentally manipulated and reference wetlands located near the mine leases. Alkylated PAHs dominated the PAH profile in all types of samples in the three categories of wetlands. Median and maximum PAH concentrations, especially alkylated PAH concentrations, tended to be higher in sediments and insect larvae in experimental wetlands than in the other types of wetlands. Such was not the case for adult insects, which contained higher than expected levels of PAHs in the three types of ponds. Overlap in PAH concentrations in larvae among pond types suggests that any increase in PAH levels resulting from the addition of tailings and tailings water to wetlands would be modest. Biota-sediment accumulation factors were higher for alkylated PAHs than for their parent counterparts and were lower in experimental wetlands than in oil sands and reference wetlands. Research is needed to examine factors that affect the bioavailability of PAHs in oil sands tailings- or tailings water-amended wetlands.  相似文献   
599.
600.
Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are relatively free of most contaminants and that contaminant concentrations are below levels (except potentially strontium) that would likely affect the survival of individuals and consequently regulate the species at the population level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号