首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
安全科学   2篇
废物处理   4篇
环保管理   1篇
综合类   4篇
基础理论   2篇
污染及防治   8篇
评价与监测   1篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
11.
Picloram (4-amino-3,5,6-trichloropicolinic acid) is a liquid auxinic herbicide used to control broad-leaved weeds. Picloram is representing a possible hazard to ecosystems and human health. Therefore, in this study, DNA methylation changes and DNA damage levels in Phaseolus vulgaris exposed to picloram, as well as whether humic acid (HA) has preventive effects on these changes were investigated. Random amplified polymorphic DNA (RAPD) techniques were used for identification of DNA damage and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques were used to detect the changed pattern of DNA methylation. According to the obtained results, picloram (5, 10, 20, and 40 mg/l) caused DNA damage profile changes (RAPDs) increasing, DNA hypomethylation and genomic template stability (GTS) decreasing. On the other hand, different concentrations of applied HA (2, 4, 6, 8, and 10%) reduced hazardous effects of picloram. The results of the experiment have explicitly indicated that HAs could be an alternative for reducing genetic damage in plants. In addition to the alleviate effects of humic acid on genetic damage, its epigenetic effect is hypomethylation.  相似文献   
12.
13.
• 90% total COD, 95.3% inert COD and 97.2% UV254 were removed. • High R2 values (over 95%) for all responses were obtained with CCD. • Operational cost was calculated to be 0.238 €/g CODremoved for total COD removal. • Fenton oxidation was highly-efficient method for inert COD removal. • BOD5/COD ratio of leachate concentrate raised from 0.04 to 0.4. The primary aim of this study is inert COD removal from leachate nanofiltration concentrate because of its high concentration of resistant organic pollutants. Within this framework, this study focuses on the treatability of leachate nanofiltration concentrate through Fenton oxidation and optimization of process parameters to reach the maximum pollutant removal by using response surface methodology (RSM). Initial pH, Fe2+ concentration, H2O2/Fe2+ molar ratio and oxidation time are selected as the independent variables, whereas total COD, color, inert COD and UV254 removal are selected as the responses. According to the ANOVA results, the R2 values of all responses are found to be over 95%. Under the optimum conditions determined by the model (pH: 3.99, Fe2+: 150 mmol/L, H2O2/Fe2+: 3.27 and oxidation time: 84.8 min), the maximum COD removal efficiency is determined as 91.4% by the model. The color, inert COD and UV254 removal efficiencies are determined to be 99.9%, 97.2% and 99.5%, respectively, by the model, whereas the total COD, color, inert COD and UV254 removal efficiencies are found respectively to be 90%, 96.5%, 95.3% and 97.2%, experimentally under the optimum operating conditions. The Fenton process improves the biodegradability of the leachate NF concentrate, increasing the BOD5/COD ratio from the value of 0.04 to the value of 0.4. The operational cost of the process is calculated to be 0.238 €/g CODremoved. The results indicate that the Fenton oxidation process is an efficient and economical technology in improvement of the biological degradability of leachate nanofiltration concentrate and in removal of resistant organic pollutants.  相似文献   
14.
This study aims to prepare a low-cost, environmentally friendly, and alternative, biosorbent to remove chromium Cr (III) and lead Pb (II) from polluted water and to find out the highest removal efficiencies using 2k factorial experiments. The Cr (III) and Pb (II) tolerant fungal strain identified as Penicillium chrysogenum was isolated from ceramic industrial sludge. The impact of process variables on biosorption of Cr (III) and Pb (II) by P. chrysogenum was first evaluated with the Taguchi screening design. Factors and levels were determined to optimize Cr (III) and Pb (II) removal efficiency. According to this, five factors; initial concentration, pH, biosorbent dose, temperature, and inactivation methods were determined for both metals, each factor defined as a fixed factor with two levels. Optimization of the parameters affecting the removal process was determined by the Taguchi method and the signal-to-noise (S/N) ratios are calculated. The maximum removal efficiency (99.92%) was observed at pH 7, biosorbent 1 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Cr (III). On the other hand, the maximum removal efficiency (98.99%) was observed at pH 4, biosorbent 5 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Pb (II). Furthermore, metal ions removal by P. chrysogenum was also confirmed by scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS). The presence of functional groups on fungal cells of metal binding was investigated by Fourier transform infrared (FT-IR).  相似文献   
15.

Goal, scope, and background  

Many studies have focused on measuring fine and course particulate matter (PM) in urban and rural sites around the world. The aim of this research is to gain information on the size distribution of particles. The physical characteristics of PM in the urban air of Istanbul were determined.  相似文献   
16.
In this study, the size distribution of airborne particles and related heavy metals Co, Cd, Sn, Cu, Ni, Cr, Pb and V in two urban areas in Istanbul: Yenibosna and Goztepe, were examined. The different inhalable particles were collected by using a cascade impactor in eight size fractions (<0.4 μm, 0.4-0.7 μm, 1.1-2.1 μm, 2.1-3.3 μm, 3.3-4.7 μm, 4.7-5.8 μm, 5.8-9 μm and >9 μm) for six months at each station. Samples were collected on glass fiber filters and filters were extracted and analyzed using ICP-MS. Log-normal distributions showed that the particles collected at the Yenibosna site have a smaller size compared to the Goztepe samples and the size distribution of PM was represented the best by the tri-modal. The average total particle concentrations and standard deviations were obtained as 67.7 ± 17.0 μg m(-3) and 82.1 ± 21.2 μg m(-3), at the Yenibosna and G?ztepe sites, respectively. The higher metal rate in fine and medium coarse PM showed that the anthropogenic sources were the most significant pollutant source. Principal component analysis identified five components for PM namely traffic, road dust, coal and fuel oil combustion, and industrial.  相似文献   
17.
18.
To investigate the coupled effects of solution chemistry and hydrodynamics on the mobility of quantum dot (QD) nanoparticles in the vadose zone, laboratory scale transport experiments involving single and/or sequential infiltrations of QDs in unsaturated and saturated porous media, and computations of total interaction and capillary potential energies were performed. As ionic strength increased, QD retention in the unsaturated porous media increased; however, this retention was significantly suppressed in the presence of a non-ionic surfactant in the infiltration suspensions as indicated by surfactant enhanced transport of QDs. In the vadose zone, the non-ionic surfactant limited the formation of QD aggregates, enhanced QD mobility and transport, and lowered the solution surface tension, which resulted in a decrease in capillary forces that not only led to a reduction in the removal of QDs, but also impacted the vadose zone flow processes. When chemical transport conditions were favorable (ionic strength of 5 × 10(-4)M and 5 × 10(-3)M, or ionic strengths of 5 × 10(-2)M and 0.5M with surfactant), the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were meso-scale processes, where infiltration by preferential flow results in the rapid transport of QDs. When chemical transport conditions were unfavorable (ionic strength of 5 × 10(-2)M and 0.5M) the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were pore-scale processes governed by gas-water interfaces (GWI) that impact the mobility of QDs. The addition of surfactant enhanced the transport of QDs both in favorable and unfavorable chemical transport conditions. The mobility and retention of QDs was controlled by interaction and capillary forces, with the latter being the most influential. GWI were found to be the dominant mechanism and site for QD removal compared with solid-water interfaces (SWI) and pore straining. Additionally, ripening phenomena were demonstrated to enhance QDs removal or retention in porous media and to be attenuated by the presence of surfactant.  相似文献   
19.
A wet–dry deposition sampler was located at The Scientific and Technological Research Council of Turkey-National Metrology Institute (TUBITAK-UME) station, and a bulk deposition sampler was placed at the Kad?ll? village to determine the atmospheric deposition flux of polycyclic aromatic hydrocarbons (PAHs) and pesticides (organochlorine and organophosphorus) in soluble fraction of samples in Kocaeli, Turkey. The 28 samples for each wet, dry, and total deposition were collected weekly from March 2006 to March 2007. Gas chromatography-tandem mass spectrometry was used to analyze the samples which were prepared by using solid-phase extraction (SPE) method. The sum of volume weighted mean of deposition fluxes was obtained as 7.43 μg m?2 day?1 for wet deposition, 0.28 μg m?2 day?1 for dry deposition and 0.54 μg m?2 day?1 for bulk deposition samples for PAHs and 9.88 μg m?2 day?1 for wet deposition, 4.49 μg m?2 day?1 for dry deposition, and 3.29 μg m?2 day?1 for bulk deposition samples for pesticides. While benzo(a)anthracene had the highest fluxes among PAH compounds for all types of depositions, guthion and phosphamidon had the highest deposition flux compared with the other pesticides. Benzo(ghi)perylene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, benzo(a)pyrene, and acenaphthene were not detected in any of the samples. Beta-HCH, gamma-HCH, and endrin aldehyde were the only compounds among 18 organochlorine pesticides to be detected in all deposition samples. The main sources of pesticides were the high number of greenhouses around the sampling stations. However, all of the organophosphorus pesticides were detected in all deposition samples. The pollution sources were identified as coal and natural gas combustion, petrogenic sources, and traffic for TUBITAK-UME station whereas coal and natural gas combustion and traffic were the main sources for Kad?ll? station by considering the results of factor analysis, ratios, and wind sector analysis.  相似文献   
20.
Environmental Science and Pollution Research - The main aim of the present study is to examine the possible nonlinear relations between foreign direct investments and environmental deterioration...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号