首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   2篇
  国内免费   1篇
安全科学   6篇
废物处理   17篇
环保管理   15篇
综合类   49篇
基础理论   27篇
污染及防治   66篇
评价与监测   13篇
社会与环境   1篇
灾害及防治   2篇
  2023年   5篇
  2021年   8篇
  2020年   6篇
  2019年   2篇
  2018年   6篇
  2017年   11篇
  2016年   10篇
  2015年   8篇
  2014年   7篇
  2013年   15篇
  2012年   8篇
  2011年   12篇
  2010年   12篇
  2009年   9篇
  2008年   5篇
  2007年   12篇
  2006年   5篇
  2005年   10篇
  2004年   9篇
  2003年   13篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有196条查询结果,搜索用时 31 毫秒
101.
Many developing and threshold countries rely on shallow groundwater wells for their water supply whilst pit latrines are used for sanitation. We employed a unified strategy involving satellite images and environmental monitoring of 16 physico-chemical and microbiological water quality parameters to identify significant land uses that can lead to unacceptable deterioration of source water, in a region with a subtropical climate and seasonally restricted torrential rainfall in Northern Argentina. Agricultural and non-agricultural sources of nitrate were illustrated in satellite images and used to assess the organic load discharged. The estimated human organic load per year was 28.5 BOD(5) tons and the N load was 7.5 tons, while for poultry farms it was 9940-BOD(5) tons and 1037-N tons, respectively. Concentrations of nitrates and organics were significantly different between seasons in well water (p values of 0.026 and 0.039, respectively). The onset of the wet season had an extraordinarily negative impact on well water due in part to the high permeability of soils made up of fine gravels and coarse sand. Discriminant analysis showed that land uses had a pronounced seasonal influence on nitrates and introduced additional microbial contamination, causing nitrification and denitrification in shallow groundwater. P-well was highly impacted by a poultry farm while S-well was affected by anthropogenic pollution and background load, as revealed by Principal Component Analysis. The application of microbial source tracking techniques is recommended to corroborate local sources of human versus animal origin.  相似文献   
102.
A unique long term, 49-year record (divided into three time periods 1961–1976, 1977–1992, and 1993–2009) of snow profile stratigraphy from the Swedish sub Arctic, was analyzed with a focus on changes in snow characteristics. The data set contained grain size, snow layer hardness, grain compactness, and snow layer dryness, observed every second week during the winter season. The results showed an increase in very hard snow layers, with harder snow in early winter and more moist snow during spring. There was a striking increase in the number of observations with very hard snow at ground level over time. More than twice as many occasions with hard snow at ground level were observed between 1993 and 2009 compared to previous years, which may have a significant effect on plants and animals. The changes in snow characteristics are most likely a result of the increasing temperatures during the start and the end of the snow season.  相似文献   
103.
The cytotoxic drug, cisplatin (cis-PtCl2(NH3)2), has been added to cultures of the marine macroalga, Ulva lactuca, under various experimental conditions. Both accumulation and internalisation over a 48 h period was greater when cisplatin was added to coastal sea water (salinity = 33) from a distilled water solution than when added to either sea water or estuarine water (salinity = 16.5) from a saline solution. This effect is attributed to the greater abundance of the more reactive monoaqua complex (cis-PtCl(OH2)(NH3)2+) in the distilled water solution and kinetic constraints on its conversion back to cis-PtCl2(NH3)2 in sea water. Despite its mode of action at the cellular level, cisplatin added up to concentrations of 150 nM did not incur a measurable reduction in the efficiency of photochemical energy conversion under any of experimental conditions tested.  相似文献   
104.
Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg−1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P450. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding.  相似文献   
105.
106.
Several species of seagrass and marine macrophytes were investigated for their biosorption performance in the removal of lead from aqueous solution. The effect of pH on the equilibrium of the seagrass Cymodocea nodosa as a biosorbent also was studied. It was found that increasing pH increased lead biosorption, with a maximum uptake of approximately 140 mg/g in the range pH 3.3 to 5. Equilibrium data at different pH levels were successfully fitted to competitive equilibrium models. In addition, the seaweeds belonging to different phyla (i.e., Chlorophyta, Heterokontophyta, and Rhodophyta) were studied for the effect of their structure on equilibrium at a constant pH 5. The brown algae (Heterokontophyta) showed the highest potential for lead sorption, with a maximum uptake of 220 mg/g for C. compressa and 140 mg/g for S. lomentaria. The green algae (Chlorophyta) showed lead uptake in the range 40 to 90 mg/g, and the red algae (Rhodophyta) was least effective, with uptake in the range 10 to 40 mg/g.  相似文献   
107.
108.
Abstract

Sources and concentrations of indoor nitrogen dioxide (NO2) were examined in Barcelona, Spain, during 1996– 1999. A total of 340 dwellings of infants participating in a hospital-based cohort study were selected from different areas of the city. Passive filter badges were used for indoor NO2 measurement over 7–30 days. Dwelling inhabitants completed a questionnaire on housing characteristics and smoking habits. Data on outdoor NO2 concentrations were available for the entire period of the study in the areas of the city where indoor concentrations were determined. Bivariate analysis was performed to investigate relationships between indoor NO2 concentrations on one hand and outdoor NO2 concentrations, housing, and occupant characteristics on the other. Stepwise multiple linear regression was performed with variables that were 1996 and 27.02 ppb in 1999, with the highest yearly value of 27.82 ppb in 1997. In the same time period, mean outdoor NO2 concentration ranged between 25.26 and 25.78 ppb with a peak of 30.5 ppb in 1998. Multiple regression analysis showed that principal sources of indoor NO2 concentrations were the use of a gas cooker, the absence of an extractor fan when cooking, and cigarette smoking. The absence of central heating was also associated with higher NO2 concentrations. Finally, each ppb increase in outdoor NO2 was associated with a 1% increase in indoor concentrations.  相似文献   
109.
110.
Most groundwater modelers avoid using static heads measured from active production wells because they can introduce a bias into model calibration. However, in the deep confined Cambrian-Ordovician Sandstone Aquifer System in the Central Midcontinent of North America, dedicated observation wells are sparse and remote from areas of most concentrated pumping. As a result, in areas where drawdown is the greatest and modeling is most needed, only static heads from production wells are available for calibration. This paper evaluates two leading sources of discrepancies in using production well data, spatial and temporal structural error (S.E.). A simple Theis solution is used to evaluate the potential magnitude of spatial S.E. when calibrating a regional MODFLOW model with coarse cell resolution. Despite theoretical analyses indicating that spatial S.E. could be significant, statistical analysis of the model results suggests that temporal S.E. is dominant. Long (ranging over decades) or frequent (monthly) head datasets are key in understanding temporal S.E., to better capture water-level variability. In this study, the range in static head observations impacted estimates of the remaining time a well could extract water from the aquifer by 0.1 to 16.0 years. This uncertainty in future water supply is highly relevant to stakeholders and must be assessed in hydrographs depicting risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号