首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21612篇
  免费   245篇
  国内免费   132篇
安全科学   586篇
废物处理   948篇
环保管理   2988篇
综合类   3492篇
基础理论   5999篇
环境理论   12篇
污染及防治   5561篇
评价与监测   1363篇
社会与环境   892篇
灾害及防治   148篇
  2021年   144篇
  2019年   140篇
  2018年   249篇
  2017年   266篇
  2016年   416篇
  2015年   325篇
  2014年   490篇
  2013年   1712篇
  2012年   606篇
  2011年   862篇
  2010年   714篇
  2009年   700篇
  2008年   880篇
  2007年   919篇
  2006年   827篇
  2005年   703篇
  2004年   672篇
  2003年   679篇
  2002年   648篇
  2001年   780篇
  2000年   585篇
  1999年   340篇
  1998年   280篇
  1997年   287篇
  1996年   289篇
  1995年   350篇
  1994年   313篇
  1993年   291篇
  1992年   290篇
  1991年   291篇
  1990年   306篇
  1989年   288篇
  1988年   256篇
  1987年   246篇
  1986年   229篇
  1985年   211篇
  1984年   262篇
  1983年   223篇
  1982年   286篇
  1981年   237篇
  1980年   191篇
  1979年   213篇
  1978年   186篇
  1977年   155篇
  1976年   139篇
  1975年   147篇
  1974年   163篇
  1973年   170篇
  1972年   152篇
  1971年   150篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
711.
Sites with dense nonaqueous‐phase liquid (DNAPL) contamination present significant remediation challenges in terms of technical practicability and cost. Remedial approaches to DNAPL sites often follow a management approach rather than removal or eradication approaches, particularly due to the uncertainties associated with the benefits of partial source mass removal, as complete source removal is unlikely. Mass‐removal technologies should be evaluated for all DNAPL sites, although implementation of recovery technologies will be limited to a few sites based upon site‐specific factors. Sitewide remedial strategies that employ source reduction, where applicable, and incorporate associated risk‐reduction technologies, including monitored natural attenuation, are advised. Creosote DNAPL sites are particularly challenging, as they are predominantly composed of low‐solubility polycyclic aromatic hydrocarbons that form long‐term continuing sources. Additionally, the physical properties of creosote DNAPL, including high viscosity and relatively low density, result in significant migration potential and considerable dissolved‐phase groundwater impacts. An innovative creosote DNAPL source recovery well design was developed to achieve separate‐phase removal of pooled creosote DNAPL. The design presented herein employs modified circulation‐well technology to mobilize DNAPL to the engineered recovery well, where it is gravity‐settled into a sump to permit separate‐phase mass removal of the emplaced DNAPL source without groundwater production or treatment. A discharge mass flux protocol was developed to verify dissolved‐phase plume stability and the benefit of the source mass removal. © 2013 Wiley Periodicals, Inc.  相似文献   
712.
The rising pressure in terms of cost efficiency on public services pushes governments to transfer part of those services to the private sector. A trend towards more privatizing can be noticed in the collection of municipal household waste. This paper reports the findings of a research project aiming to compare the cost between the service of private and public collection of residual household waste. Multiple case studies of municipalities about the Flemish region of Belgium were conducted. Data concerning the year 2009 were gathered through in-depth interviews in 2010. In total 12 municipalities were investigated, divided into three mutual comparable pairs with a weekly and three mutual comparable pairs with a fortnightly residual waste collection. The results give a rough indication that in all cases the cost of private service is lower than public service in the collection of household waste. Albeit that there is an interest in establishing whether there are differences in the costs and service levels between public and private waste collection services, there are clear difficulties in establishing comparisons that can be made without having to rely on a large number of assumptions and corrections. However, given the cost difference, it remains the responsibility of the municipalities to decide upon the service they offer their citizens, regardless the cost efficiency: public or private.  相似文献   
713.
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography–mass spectrometry (GC–MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.  相似文献   
714.
This article aims to understand the radiation behavior within a photo-reactor, following the ISO 22197-1:2007 standard. The RADIANCE lighting simulation tool, based on the backward ray-tracing modeling method, is employed for a numerical computation of the radiation field. The reflection of the glass cover in the photo-reactor and the test sample influence the amount of irradiance received by the test-sample surface in the photo-reactor setup. The reflection of a white sample limits the irradiance reduction by the glass cover to 1.4 %, but darker samples can lead to an overestimation up to 9.8 % when used in the same setup. This overestimation could introduce considerable error into the interpretation of experiments. Furthermore, this method demonstrates that the kinetics for indoor photocatalytic pollutant degradation can be refined through radiation modeling of the reactor setup. In addition, RADIANCE may aid in future modeling of the more complex indoor environment where radiation affects significantly photocatalytic activity.  相似文献   
715.
As indoor smoking bans have become widely adopted, some U.S. communities are considering restricting smoking outdoors, creating a need for measurements of air pollution near smokers outdoors. Personal exposure experiments were conducted with four to five participants at six sidewalk bus stops located 1.5–3.3 m from the curb of two heavily traveled California arterial highways with 3300–5100 vehicles per hour. At each bus stop, a smoker in the group smoked a cigarette. Gravimetrically calibrated continuous monitors were used to measure fine particle concentrations (aerodynamic diameter ≤2.5 µm; PM2.5) in the breathing zones (within 0.2 m from the nose and mouth) of each participant. At each bus stop, ultrafine particles (UFP), wind speed, temperature, relative humidity, and traffic counts were also measured. For 13 cigarette experiments, the mean PM2.5 personal exposure of the nonsmoker seated 0.5 m from the smoker during a 5-min cigarette ranged from 15 to 153 µg/m3. Of four persons seated on the bench, the smoker received the highest PM2.5 breathing-zone exposure of 192 µg/m3. There was a strong proximity effect: nonsmokers at distances 0.5, 1.0, and 1.5 m from the smoker received mean PM2.5 personal exposures of 59, 40, and 28 µg/m3, respectively, compared with a background level of 1.7 µg/m3. Like the PM2.5 concentrations, UFP concentrations measured 0.5 m from the smoker increased abruptly when a cigarette started and decreased when the cigarette ended, averaging 44,500 particles/cm3 compared with the background level of 7200 particles/cm3. During nonsmoking periods, the UFP background concentrations showed occasional peaks due to traffic, whereas PM2.5 background concentrations were extremely low. The results indicate that a single cigarette smoked outdoors at a bus stop can cause PM2.5 and UFP concentrations near the smoker that are 16–35 and 6.2 times, respectively, higher than the background concentrations due to cars and trucks on an adjacent arterial highway.

Implications: Rules banning smoking indoors have been widely adopted in the United States and in many countries. Some communities are considering smoking bans that would apply to outdoor locations. Although many measurements are available of pollutant concentrations from secondhand smoke at indoor locations, few measurements are available of exposure to secondhand smoke outdoors. This study provides new data on exposure to fine and ultrafine particles from secondhand smoke near a smoker outdoors. The levels are compared with the exposure measured next to a highway. The findings are important for policies that might be developed for reducing exposure to secondhand smoke outdoors.  相似文献   

716.
In order to calculate total concentrations for comparison to ambient air quality standards, monitored background concentrations are often combined with model predicted concentrations. Models have low skill in predicting the locations or time series of observed concentrations. Further, adding fixed points on the probability distributions of monitored and predicted concentrations is very conservative and not mathematically correct. Simply adding the 99th percentile predicted to the 99th percentile background will not yield the 99th percentile of the combined distributions. Instead, an appropriate distribution can be created by calculating all possible pairwise combinations of the 1-hr daily maximum observed background and daily maximum predicted concentration, from which a 99th percentile total value can be obtained. This paper reviews some techniques commonly used for determining background concentrations and combining modeled and background concentrations. The paper proposes an approach to determine the joint probabilities of occurrence of modeled and background concentrations. The pairwise combinations approach yields a more realistic prediction of total concentrations than the U.S. Environmental Protection Agency's (EPA) guidance approach and agrees with the probabilistic form of the National Ambient Air Quality Standards.

Implications: EPA's current approaches to determining background concentrations for compliance modeling purposes often lead to “double counting” of background concentrations and actual plume impacts and thus lead to overpredictions of total impacts. Further, the current Tier 1 approach of simply adding the top ends of the background and model predicted concentrations (e.g., adding the 99th percentiles of these distributions together) results in design value concentrations at probabilities in excess of the form of the National Ambient Air Quality Standards.  相似文献   
717.
This study presents an evaluation of summertime ozone concentrations over North America (NA) and Europe (EU) using the database generated from Phase 1 of the Air Quality Model Evaluation International Initiative (AQMEII). The analysis focuses on identifying temporal and spatial features that can be used to stratify operational model evaluation metrics and to test the extent to which the various modeling systems can replicate the features seen in the observations. Using a synoptic map typing approach, it is demonstrated that model performance varies with meteorological conditions associated with specific synoptic-scale flow patterns over both eastern NA and EU. For example, the root mean square error of simulated daily maximum 8-hr ozone was twice as high when cloud fractions were high compared with when cloud fractions were low over eastern NA. Furthermore, results show that over both NA and EU the regional models participating in AQMEII were able to better reproduce the observed variance in ambient ozone levels than the global model used to specify chemical boundary conditions, although the variance simulated by almost all regional models is still less that the observed variance on all spatiotemporal scales. In addition, all modeling systems showed poor correlations with observed fluctuations on the intraday time scale over both NA and EU. Furthermore, a methodology is introduced to distinguish between locally influenced and regionally representative sites for the purpose of model evaluation. Results reveal that all models have worse model performance at locally influenced sites. Overall, the analyses presented in this paper show how observed temporal and spatial information can be used to stratify operational model performance statistics and to test the modeling systems’ ability to replicate observed temporal and spatial features, especially at scales the modeling systems are designed to capture.
Implications: The analyses presented in this paper demonstrate how observed temporal and spatial information can be used to stratify operational model performance and to test the modeling systems’ ability to replicate observed temporal and spatial features. Decisions for the improvement of regional air quality models should be based on the information derived from only regionally representative sites.  相似文献   
718.
Animal feeding operations (AFOs) produce particulate matter (PM) and gaseous pollutants. Investigation of the chemical composition of PM2.5 inside and in the local vicinity of AFOs can help to understand the impact of the AFO emissions on ambient secondary PM formation. This study was conducted on a commercial egg production farm in North Carolina. Samples of PM2.5 were collected from five stations, with one located in an egg production house and the other four located in the vicinity of the farm along four wind directions. The major ions of NH4+, Na+, K+, SO42?, Cl?, and NO3? were analyzed using ion chromatography (IC). In the house, the mostly abundant ions were SO42?, Cl?, and K+. At ambient stations, SO42?, and NH4+ were the two most abundant ions. In the house, NH4+, SO42?, and NO3? accounted for only 10% of the PM2.5 mass; at ambient locations, NH4+, SO42?, and NO3? accounted for 36–41% of the PM2.5 mass. In the house, NH4+ had small seasonal variations indicating that gas-phase NH3 was not the only major force driving its gas–particle partitioning. At the ambient stations, NH4+ had the highest concentrations in summer. In the house, K+, Na+, and Cl? were highly correlated with each other. In ambient locations, SO42? and NH4+ had a strong correlation, whereas in the house, SO42? and NH4+ had a very weak correlation. Ambient temperature and solar radiation were positively correlated with NH4+ and SO42?. This study suggests that secondary PM formation inside the animal house was not an important source of PM2.5. In the vicinity, NH3 emissions had greater impact on PM2.5 formation.
ImplicationsThe chemical composition of PM2.5 inside and in the local vicinity of AFOs showed the impact of the AFO emissions on ambient secondary PM2.5 formation, and the fate and transport of air pollutants associated with AFOs. The results may help to manage in-house animal facility air quality, and to develop regional air quality control strategies and policies, especially in animal agriculture-concentrated areas.  相似文献   
719.
Detailed hourly precipitation data are required for long-range modeling of dispersion and wet deposition of particulate matter and water-soluble pollutants using the CALPUFF model. In sparsely populated areas such as the north central United States, ground-based precipitation measurement stations may be too widely spaced to offer a complete and accurate spatial representation of hourly precipitation within a modeling domain. The availability of remotely sensed precipitation data by satellite and the National Weather Service array of next-generation radars (NEXRAD) deployed nationally provide an opportunity to improve on the paucity of data for these areas. Before adopting a new method of precipitation estimation in a modeling protocol, it should be compared with the ground-based precipitation measurements, which are currently relied upon for modeling purposes. This paper presents a statistical comparison between hourly precipitation measurements for the years 2006 through 2008 at 25 ground-based stations in the north central United States and radar-based precipitation measurements available from the National Center for Environmental Predictions (NCEP) as Stage IV data at the nearest grid cell to each selected precipitation station. It was found that the statistical agreement between the two methods depends strongly on whether the ground-based hourly precipitation is measured to within 0.1 in/hr or to within 0.01 in/hr. The results of the statistical comparison indicate that it would be more accurate to use gridded Stage IV precipitation data in a gridded dispersion model for a long-range simulation, than to rely on precipitation data interpolated between widely scattered rain gauges.

Implications:

The current reliance on ground-based rain gauges for precipitation events and hourly data for modeling of dispersion and wet deposition of particulate matter and water-soluble pollutants results in potentially large discontinuity in data coverage and the need to extrapolate data between monitoring stations. The use of radar-based precipitation data, which is available for the entire continental United States and nearby areas, would resolve these data gaps and provide a complete and accurate spatial representation of hourly precipitation within a large modeling domain.  相似文献   

720.
This work applies optimization and an Eulerian inversion approach presented by Bagtzoglou and Baun in 2005 in order to reconstruct contaminant plume time histories and to identify the likely source of atmospheric contamination using data from a real test site for the first time. Present-day distribution of an atmospheric contaminant plume as well as data points reflecting the plume history allow the reconstruction and provide the plume velocity, distribution, and probable source. The method was tested to a hypothetical case and with data from the Forest Atmosphere Transfer and Storage (FACTS) experiment in the Duke experimental forest site. In the scenarios presented herein, as well as in numerous cases tested for verification purposes, the model conserved mass, successfully located the peak of the plume, and managed to capture the motion of the plume well but underestimated the contaminant peak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号