首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   580篇
  免费   26篇
  国内免费   39篇
安全科学   29篇
废物处理   39篇
环保管理   149篇
综合类   79篇
基础理论   149篇
环境理论   2篇
污染及防治   130篇
评价与监测   44篇
社会与环境   18篇
灾害及防治   6篇
  2023年   9篇
  2022年   5篇
  2021年   14篇
  2020年   11篇
  2019年   19篇
  2018年   22篇
  2017年   21篇
  2016年   39篇
  2015年   31篇
  2014年   29篇
  2013年   32篇
  2012年   25篇
  2011年   42篇
  2010年   38篇
  2009年   29篇
  2008年   42篇
  2007年   27篇
  2006年   18篇
  2005年   16篇
  2004年   17篇
  2003年   17篇
  2002年   18篇
  2001年   7篇
  2000年   9篇
  1999年   7篇
  1998年   8篇
  1997年   15篇
  1996年   16篇
  1995年   10篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1972年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有645条查询结果,搜索用时 19 毫秒
221.
Bats are most diverse in the tropics, but there are no quantitative data on torpor use for energy conservation by any tropical bat in the wild. We examined the thermal biology, activity patterns and torpor use of two tree-roosting long-eared bats (Nyctophilus geoffroyi, 7.8?g) in tropical northern Australia in winter using temperature telemetry. Bats commenced activity about 20?min after sunset, ended activity about 2.5?h before sunrise and entered torpor everyday in the early morning even when minimum ambient temperatures (T a) were as high as 23°C. On average, bats remained torpid for almost 5?h, mean minimum skin temperature (T skin) measured was 22.8?±?0.1°C and daily T skin minima were correlated with T a. Our study shows that even in the tropics, torpor is frequently employed by bats, suggesting that worldwide most bat species are heterothermic and use torpor for energy conservation. We propose that the ability of employing torpor and the resulting highly plastic energy requirements may partially explain why these small insectivorous bats can inhabit almost the entire Australian continent despite vastly different climatic and likely trophic conditions. Reduced energy requirements also may permit survival in degraded or modified habitats, reduce the need for foraging and reduce exposure to predators. Thus, the ability to employ torpor may be one important reason for why most Australian bats and other heterothermic mammals have not gone extinct whereas many obligatory homeothermic mammals that cannot employ torpor and have high energy and foraging requirements have suffered high rates of extinctions.  相似文献   
222.
Rice (Oryza sativa L.) agriculture is estimated to cover 161 million ha of land on Earth, with 10% grown in temperate regions. Currently there are strong concerns about surface water nutrient pollution, and the purpose of this study was to determine the impacts of temperate rice cultivation on nutrient dynamics at the small watershed scale. Over the course of the 2008 growing season (May through September), bi-weekly grab samples were collected from outlets of 11 agricultural subwatersheds in California. Samples were analyzed for NO3-N, NH4-N, PO4-P, K, and dissolved organic nitrogen (DON) concentrations, and the average values across all subwatersheds and sampling dates were 0.22, 0.031, 0.047, 1.36, and 0.32 mg L−1, respectively. Linear mixed effects analysis was used to evaluate the magnitude of relationships between nutrient concentration and flux and subwatershed characteristics (i.e. percent soil clay and organic matter, percent rice area, irrigation water reuse, subwatershed discharge, irrigated area, and time, measured as the day in the growing season). For all nutrients, flux decreased over time and increased with discharge. Concentrations of K and DON were highest at the start and end of the growing season. Concentrations of NH4-N were near non-detect levels, with the exception of a peak in mid-July, which corresponds to when many growers top-dress rice fields with N fertilizer. Nitrate-N concentration and flux decreased with percent rice area, whereas PO4-P concentrations increased with percent rice area, indicating that rice area should be considered in future watershed-scale studies of nutrient discharge. In all subwatersheds, the discharge loads of K were smaller than surface water input loads, while NO3-N, NH4-N, PO4-P, and DON discharge loads exceeded input loads when total growing season discharge was greater than 3500-6600 m3 ha−1. This implies that the management of subwatershed discharge can be used to control nutrient export from rice-growing areas.  相似文献   
223.
<正>It has been estimated that between 94 million and 220 million people around the world are at risk of consuming drinking water that contain arsenic concentrations higher than 10 μg/L( Podgorski and Berg, 2020),  相似文献   
224.
In a previous article, Beschta et al. (Environ Manag 51(2):474–491, 2013) argue that grazing by large ungulates (both native and domestic) should be eliminated or greatly reduced on western public lands to reduce potential climate change impacts. The authors did not present a balanced synthesis of the scientific literature, and their publication is more of an opinion article. Their conclusions do not reflect the complexities associated with herbivore grazing. Because grazing is a complex ecological process, synthesis of the scientific literature can be a challenge. Legacy effects of uncontrolled grazing during the homestead era further complicate analysis of current grazing impacts. Interactions of climate change and grazing will depend on the specific situation. For example, increasing atmospheric CO2 and temperatures may increase accumulation of fine fuels (primarily grasses) and thus increase wildfire risk. Prescribed grazing by livestock is one of the few management tools available for reducing fine fuel accumulation. While there are certainly points on the landscape where herbivore impacts can be identified, there are also vast grazed areas where impacts are minimal. Broad scale reduction of domestic and wild herbivores to help native plant communities cope with climate change will be unnecessary because over the past 20–50 years land managers have actively sought to bring populations of native and domestic herbivores in balance with the potential of vegetation and soils. To cope with a changing climate, land managers will need access to all available vegetation management tools, including grazing.  相似文献   
225.
Monitoring is essential to track the long-term recovery of endangered species. Greater emphasis on habitat monitoring is especially important for taxa whose populations may be difficult to quantify (e.g., insects) or when true recovery (delisting) requires continuous species-specific habitat management. In this paper, we outline and implement a standardized framework to facilitate the integration of habitat monitoring with species recovery efforts. The framework has five parts: (1) identify appropriate sample units, (2) select measurable indicators of habitat requirements, (3) determine rating categories for these indicators, (4) design and implement appropriate data collection protocols, and (5) synthesize the ratings into an overall measure of habitat potential. Following these steps, we developed a set of recovery criteria to estimate habitat potential and initially assess restoration activities in the context of recovering an endangered insect, the Karner blue butterfly (Lycaeides melissa samuelis). We recommend basing the habitat potential grading scheme on recovery plan criteria, the latest information on species biology, and working hypotheses as needed. The habitat-based assessment framework helps to identify which recovery areas and habitat patches are worth investing in and what type of site-specific restoration work is needed. We propose that the transparency and decision-making process in endangered insect recovery efforts could be improved through adaptive management that explicitly identifies and tracks progress toward habitat objectives and ultimate population recovery.  相似文献   
226.
Australian owlet-nightjars (Aegotheles cristatus; ~50?g) are one of only a few avian species that roost in cavities year-round and regularly enter torpor. Cavity roosts act as thermal buffers, and roost type likely affects energy expenditure of small birds. We used radiotelemetry to locate diurnal winter roost sites of owlet-nightjars in central Australia and to measure body (T (b)) and skin (T (skin)) temperature. We also recorded ambient temperature inside (T (IN)) and outside roosts. Individual owlet-nightjars used one to seven different roosts (tracking time 3-10?weeks), selecting either rock crevices (four birds) or tree hollows (four birds), or switching between the two roost types (seven birds). Rock crevices (T (IN) +9°C to +33°C) were warmer and thermally more stable than tree hollows (T (IN) -4.0°C to +37°C). Torpor, often expressed by a reduction of T (skin)/T (b) by >10°C for 3-4?h at dawn, was influenced by roost selection; torpor use in tree hollows was almost twice that in rock crevices. Despite the potential energy savings accrued from roosting in well-insulated cavities, owlet-nightjars roosted in tree hollows more often (65% bird days, n?=?398) than in rock crevices (35% bird days, n?=?211). Lower costs of arousal from torpor via passive rewarming and basking and decreased risk of predation are two possible explanations for the preference to roost in tree hollows. We provide the first evidence for the influence of cavity roost selection on torpor use in a free-ranging bird and show that roost selection and thermal biology are strongly interrelated in determining energy expenditure.  相似文献   
227.
228.
This paper provides an analysis of co-benefits for traditional air pollutants made possible through global climate policies using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model in the time horizon up to 2050. The impact analysis is based on projections of energy consumption provided by the Prospective Outlook for the Long term Energy System (POLES) model for a scenario without any global greenhouse gas mitigation efforts, and for a 2°C climate policy scenario which assumes internationally coordinated action to mitigate climate change. Outcomes of the analysis are reported globally and for key world regions: the European Union (EU), China, India and the United States. The assessment takes into account current air pollution control legislation in each country. Expenditures on air pollution control under the global climate mitigation regime are reduced in 2050 by 250 billion € when compared to the case without climate measures. Around one third of financial co-benefits estimated world-wide in this study by 2050 occur in China, while an annual cost saving of 35 billion (Euros) € is estimated for the EU if the current air pollution legislation and climate policies are adopted in parallel. Health impacts of air pollution are quantified in terms of loss of life expectancy related to the exposure from anthropogenic emissions of fine particles, as well as in terms of premature mortality due to ground-level ozone. For example in China, current ambient concentrations of particulate matter are responsible for about 40 months-losses in the average life expectancy. In 2050, the climate strategies reduce this indicator by 50 %. Decrease of ozone concentrations estimated for the climate scenario might save nearly 20,000 cases of premature death per year. Similarly significant are reductions of impacts on ecosystems due to acidification and eutrophication.  相似文献   
229.
230.
Data-logging devices are commonly used to study the foraging behaviour of individual seabirds. Such studies need to examine the potential effects of using devices on instrumented individuals, not only for ethical reasons but also to ensure the validity of data gathered. We studied the effects of two types of device (time-depth recorder and global positioning system) on little penguins (Eudyptula minor) during the 2010 and 2011 breeding season at Oamaru, New Zealand. Mixed-effect models were used to test for effects of devices by comparing changes in body weight, chick growth and breeding performance between instrumented and control individuals. We found no detectable effects of the attached devices on body weight change, hatching success, fledging success, chick growth parameters or adult survival. We conclude that it is possible to attach data-logging devices to adult little penguins for extended periods during the breeding season with minimal impacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号