首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2302篇
  免费   54篇
  国内免费   54篇
安全科学   80篇
废物处理   90篇
环保管理   418篇
综合类   376篇
基础理论   563篇
环境理论   6篇
污染及防治   591篇
评价与监测   175篇
社会与环境   101篇
灾害及防治   10篇
  2023年   27篇
  2022年   25篇
  2021年   39篇
  2020年   34篇
  2019年   39篇
  2018年   58篇
  2017年   68篇
  2016年   79篇
  2015年   77篇
  2014年   76篇
  2013年   158篇
  2012年   93篇
  2011年   148篇
  2010年   111篇
  2009年   118篇
  2008年   133篇
  2007年   140篇
  2006年   101篇
  2005年   87篇
  2004年   89篇
  2003年   83篇
  2002年   95篇
  2001年   37篇
  2000年   32篇
  1999年   19篇
  1998年   22篇
  1997年   33篇
  1996年   33篇
  1995年   30篇
  1994年   29篇
  1993年   18篇
  1992年   24篇
  1991年   19篇
  1990年   13篇
  1989年   13篇
  1988年   17篇
  1987年   15篇
  1986年   15篇
  1985年   7篇
  1984年   9篇
  1983年   10篇
  1982年   13篇
  1981年   11篇
  1980年   7篇
  1979年   11篇
  1978年   9篇
  1976年   6篇
  1974年   6篇
  1955年   5篇
  1954年   8篇
排序方式: 共有2410条查询结果,搜索用时 15 毫秒
121.
Even though the Selenga is the main tributary to Lake Baikal in Russia, the largest part of the Selenga River basin is located in Mongolia. It covers a region that is highly diverse, ranging from almost virgin mountain zones to densely urbanized areas and mining zones. These contrasts have a strong impact on rivers and their ecosystems. Based on two sampling campaigns (summer 2014, spring 2015), we investigated the longitudinal water quality pattern along the Selenga and its tributaries in Mongolia. While headwater regions typically had a very good water quality status, wastewater from urban areas and impacts from mining were found to be main pollution sources in the tributaries. The highest nutrient concentrations in the catchment were found in Tuul River, and severely elevated concentrations of trace elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn), nutrients (NH4 +, NO2 ?, NO3 ?, PO4 3?), and selected major ions (SO4 2?) were found in main tributaries of Selenga River. Moreover, trace element concentrations during spring 2015 (a time when many mines had not yet started operation) were markedly lower than in summer 2014, indicating that the additional metal loads measured in summer 2014 were related to mining activities. Nevertheless, all taken water samples in 2014 and 2015 from the main channel of the Mongolian Selenga River complied with the Mongolian standard (MNS 1998) for the investigated parameters.  相似文献   
122.
Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p?=?0.002) among monitoring sites during baseflow, and significant interactive effects (p?=?0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.  相似文献   
123.
Jobos Bay, located on the southeastern coast of Puerto Rico, contains a variety of habitats including mangroves, seagrass meadows, and coral reefs. The watershed surrounding the bay includes a number of towns, agricultural areas, and the Jobos Bay National Estuarine Research Reserve (NERR). Jobos Bay and the surrounding watershed are part of a Conservation Effects Assessment Project (CEAP), involving the Jobos Bay NERR, the US Department of Agriculture, and the National Oceanic and Atmospheric Administration (NOAA) to assess the benefits of agricultural best management practices (BMPs) on the terrestrial and marine environments. As part of the Jobos Bay CEAP, NOAA collected sediment samples in May 2008 to characterize over 130 organic chemical contaminants. This paper presents the results of the organic contaminant analysis. The organic contaminants detected in the sediments included polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and the pesticide DDT. PAHs at one site in the inner bay near a boat yard were significantly elevated; however, all organic contaminant classes measured were below NOAA sediment quality guidelines that would have indicated that impacts were likely. The results of this work provide an important baseline assessment of the marine environment that will assist in understanding the benefits of implementing BMPs on water quality in Jobos Bay.  相似文献   
124.
The sources, distribution, levels and sinks of perfluorooctane sulfonate (PFOS) estimated to be released from areas of high population density, have been explored using the river Rhine as a case study. A comparison between modelled and measured data is presented, along with analysis of the importance of PFOS sorption in riverine systems. PFOS releases into the Rhine were estimated to be 325-690 kg/yr based on per capita emission rates of 27-57 μg day(-1) from a population of 33 million living within a 50 km zone either side of the river. Sorption of PFOS to suspended particles and sediments may alter its fate in the aquatic environment. Therefore available measured and modelled partitioning data was assessed, and K(d) values (sorption coefficient) of 7.5 and 20 were selected. This resulted in sediment-water ratios of 23-76 : 1, which are similar to ratios reported in the literature, and resulted in modelled estimates that <20% of the total PFOS entering the Rhine binds to sediments or suspended particles. The calculated discharge from the Rhine to the North Sea based on measured data was 420-2200 kg/yr; our model predictions are in good agreement with these estimates. Emission trends were accurately predicted, suggesting population density can be effectively used as a surrogate for diffuse PFOS emissions from product use, while predicted concentrations were a factor of 2-4 below measured data showing the importance of other sources. Transfer of PFOS to sediment is estimated to be minimal, and consequently discharges to the North Sea are roughly equal to PFOS releases to river water.  相似文献   
125.
There has been extensive analysis of Clean Air Act Amendment (CAAA) regulation impacts to changes in atmospheric nitrogen deposition; however, few studies have focused on watershed nitrogen transfer particularly regarding long-term predictions. In this study, we investigated impacts of CAAA NOx emissions on the fate and transport of nitrogen for two watersheds in the Neuse River Basin. We applied the Soil and Water Assessment Tool (SWAT) using simulated deposition rates from the Community Multiscale Air Quality (CMAQ) model. Two scenarios were investigated: one that considered CAAA emission controls in CMAQ simulation (with) and a second that did not (without). By 2020, results showed a 70 % drop in nitrogen discharge for the Little River watershed and a 50 % drop for the Nahunta watershed from 1990 levels under the with-CAAA scenario. Denitrification and plant nitrogen uptake played important roles in nitrogen discharge from each watershed. Nitrogen watershed response time to a change in atmospheric nitrogen deposition was 4 years for Nahunta and 2 years for Little River. We attribute these differences in nitrogen response time to contrasts in agricultural land use and diversity of crop types. Soybean, hay, and corn land covers had comparatively longer response times to changes in atmospheric deposition. The studied watersheds demonstrate relatively large nitrogen retention: ≥80 % of all delivered nitrogen.  相似文献   
126.
According to Directive 2002/49, strategic noise maps and their correspondent action plans were carried out in the Autonomous Community of Navarre, Spain. Six strategic noise maps were produced for 120 km of major roads as well as a strategic noise map for the Agglomeration of the Region of Pamplona (ARP) with a population of 280,199 inhabitants. In the ARP, a total of 36,400 people (13.0 %) are exposed to Ln levels over 55 dBA and 42,300 people (15.1 %) are exposed to Lden levels over 65 dBA. With regard to major roads, a total of 3,900 people are exposed to Ln levels over 55 dBA and 2,400 people are exposed to Lden levels over 65 dBA. When designing action plans, different prioritisation criteria concerning rank-based effectiveness measures (mainly the amount of people benefitting from them) were taken into account.  相似文献   
127.
River systems consist of hydrogeomorphic patches (HPs) that emerge at multiple spatiotemporal scales. Functional process zones (FPZs) are HPs that exist at the river valley scale and are important strata for framing whole-watershed research questions and management plans. Hierarchical classification procedures aid in HP identification by grouping sections of river based on their hydrogeomorphic character; however, collecting data required for such procedures with field-based methods is often impractical. We developed a set of GIS-based tools that facilitate rapid, low cost riverine landscape characterization and FPZ classification. Our tools, termed RESonate, consist of a custom toolbox designed for ESRI ArcGIS®. RESonate automatically extracts 13 hydrogeomorphic variables from readily available geospatial datasets and datasets derived from modeling procedures. An advanced 2D flood model, FLDPLN, designed for MATLAB® is used to determine valley morphology by systematically flooding river networks. When used in conjunction with other modeling procedures, RESonate and FLDPLN can assess the character of large river networks quickly and at very low costs. Here we describe tool and model functions in addition to their benefits, limitations, and applications.  相似文献   
128.
Robust monitoring of carbon sequestration by forests requires the use of multiple data sources analyzed at a common scale. To that end, model-based Moderate Resolution Imaging Spectroradiometer (MODIS) and field-based Forest Inventory and Analysis (FIA) data of net primary productivity (NPP) were compared at increasing levels of spatial aggregation across the eastern USA. A total of 52,167 FIA plots and colocated MODIS forest cover NPP pixels were analyzed using a hexagonal tiling system. A protocol was developed to assess the optimal scale as an optimal size of landscape patches at which to map spatially explicit estimates of MODIS and FIA NPP. The optimal mapping resolution (hereafter referred to as optimal scale) is determined using spatially scaled z-statistics as the tradeoff between increased spatial agreement as measured by Pearson’s correlation coefficient and decreased details of coverage as measured by the number of hexagons. Spatial sensitivity was also assessed using land cover assessment and forest homogeneity using spatially scaled z-statistics. Pearson correlations indicate that MODIS and FIA NPP are most highly correlated when using large hexagons, while z-statistics indicate an optimal scale at an intermediate hexagon size of 390 km2. This optimal scale had more spatial detail than was obtained for larger hexagons and greater spatial agreement than was obtained for smaller hexagons. The z-statistics for land cover assessment and forest homogeneity also indicated an optimal scale of 390 km2.  相似文献   
129.
The photocatalytic reduction of CO2 with H2O was investigated using Cu/TiO2 photocatalysts in aqueous solution. For this purpose, Cu/TiO2 photocatalysts (with 0.2, 0.9, 2, 4, and 6 wt.% of Cu) have been synthesized via sol-gel method. The photocatalysts were extensively characterized by means of inductively coupled plasma optical emission spectrometry (ICP-OES), N2 physisorption (BET), XRD, UV-vis DRS, FT-IR, Raman spectroscopy, TEM-EDX, and photoelectrochemical measurements. The as-prepared photocatalysts contain anatase as a major crystalline phase with a crystallite size around 13 nm. By increasing the amount of Cu, specific surface area and band gap energy decreased in addition to the formation of large agglomeration of CuO. Results revealed that the photocatalytic reduction of CO2 decreased in the presence of Cu/TiO2 in comparison to pure TiO2, which might be associated to the formation of CuO phase acting as a recombination center of generated electron-hole pair. Decreasing of photoactivity can also be connected with a very low position of conduction band of photocatalysts with high Cu content, which makes H2 production necessary for CO2 reduction more difficult.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号