In order to search for locally available and untried biomaterials in China with high removal capacity of heavy metals from wastewater, the feasibility of Spirulina maxima as biosorbent for lead removal and recovery from aqueous solution was investigated. The lead biosorption was studied by using intact biomass and pretreated biomass of S. maxima. The effects of operational conditions (e.g. pH, contact time, biomass concentration etc.) on lead biosorption were investigated. The biosorption was solution pH dependent and the maximum adsorption was obtained at a solution pH of about 5.5. The adsorption equilibrium was reached in 60 min. The biosorption followed the Freundlich isotherm model. The maximum removal ratios of lead were about 84% in intact biomass and 92% in pretreated biomass. The lead adsorbed could be desorbed effectively by 0.1 M nitric acid, EDTA and hydrochloric acid. The results in this study indicated that pretreated biomass of S. maxima was a promising candidate for removing lead from wastewater. 相似文献
The sorption and desorption behavior of benzidine in eight solvent-sediment systems were studied using a batch method. The solvents tested included deionized water (DI), calcium chloride solution (CaCl2), sodium hydroxide solution (NaOH), acetonitrile (ACN), a mixture of acetonitrile and ammonium acetate solution (ACN-NH4OAc), methanol (MeOH), ammonium acetate solution (NH4OAc) and hydrochloric acid solution (HCl). Three sets of sorption isotherm experiments were conducted separately in these eight solvents with seven days, three weeks, and two months of contact times, respectively. The results demonstrated nonlinear benzidine sorption phenomena in all eight solvents with higher sorption affinities for sediment sites in the aqueous solvents than in the organic solvents. The results from the desorption experiments revealed that the benzidine desorption efficiencies in the solvents decreased in an order, which was approximately the reverse order of its sorption affinity. Results also suggested that hydrophobic partitioning and covalent binding processes dominated in the desorption experiments, while cation exchange process had little effect on desorption of benzidine. A three-stage model was subsequently applied to simulate the desorption data in the selected solvents of ACN, ACN-NH4OAc and NaOH, respectively. The rapidly desorbing initial fractions were about 0.13-0.20, 0.15-0.26, and 0.18-0.25 for ACN, ACN-NH4OAc and NaOH, respectively. Finally, the sorbed concentrations of benzidine in slowly and very slowly desorbing domains in the selected solvents were correlated with the maximum sorption capacities obtained from the Langmuir sorption isotherm model. The maximum sorption capacities of benzidine were found to be comparable to the amount of benzidine residing in the slowly and very slowly desorbing domains. 相似文献
Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions,
but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most
significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007,
the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic
Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using
local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction. 相似文献
To investigate the chemical composition, size distribution, and mixing state of aerosol particles on heavy pollution days, single-particle aerosol mass spectrometry was conducted during 9–26 October 2015 in Xi’an, China. The measured particles were classified into six major categories: biomass burning (BB) particles, K-secondary particles, elemental carbon (EC)–related particles, metal-containing particles, dust, and organic carbon (OC) particles. BB and EC-related particles were the dominant types during the study period and mainly originated from biomass burning, vehicle emissions, and coal combustion. According to the ambient air quality index, two typical episodes were defined: clean days (CDs) and polluted days (PDs). Accumulation of BB particles and EC-related particles was the main reason for the pollution in Xi’an. Most types of particle size were larger on PDs than CDs. Each particle type was mixed with secondary species to different degrees on CDs and PDs, indicating that atmospheric aging occurred. The mixing state results demonstrated that the primary tracers were oxidized or vanished and that the amount of secondary species was increased on PDs. This study provides valuable information and a dataset to help control air pollution in the urban areas of Xi’an.
Effluent organic matter from biological wastewater treatment plants is composed of degradation products and soluble microbial
products (SMP). Protein, polysaccharide, humic acid, and DNA were major biomolecules of SMP. Little is known about the effects
of SMP as microbially derived precursors on disinfection byproduct formation and speciation in biologically treated wastewater.
In addition, there has never been any attempt to directly chlorinate the major biomolecules of SMP. 相似文献
BACKGROUND, AIM AND SCOPE: With respect to the enormous increase of chemical production in the last decades and the tens of thousands of individual chemicals on the market, the permanent improvement of chemical management is a permanent target to achieve the goals of sustainable consumption and production set by the WSSD in Johannesburg 2002. MAIN FEATURES: Several approaches exist to describe sustainability of chemistry. However, commonly agreed criteria are still missing. There is no doubt that products of modern chemistry help to achieve important goals of sustainability and that significant improvements have occurred regarding direct releases from production sites, but several facts demonstrate that chemistry is far from being sustainable. Still too many chemicals exhibit hazardous characteristics and pose a risk to health and environment. Too many resources are needed to produce chemicals and finished products. RESULTS AND CONCLUSION: Therefore, a strategy for sustainability of chemistry should be developed which comprises the following main elements: 1. Sustainable chemicals: sustainable chemical management includes a regulatory framework which makes no difference between new and existing chemicals, contains efficient information flow through the supply chain which allows users to handle chemicals safely and offers an authorisation procedure and/or an efficient restriction procedure for substances of high concern. This regulatory scheme should promote the development of inherently safe chemicals. 2. Sustainable chemical production: Sustainable chemical production needs the development and implementation of emerging alternative techniques like selective catalysis, biotechnology in order to release less CO2 and less toxic by-products, to save energy and to achieve higher yields. Information exchange on best available techniques (BAT) and best environmental practices (BEP) may help to promote changes towards more sustainability. 3. Sustainable products: An integrated product policy which provides a framework for sustainable products promotes the development of products with a long-term use phase, low resource demand in production and use, low emission of hazardous substances and properties suitable for reuse and recycling. This may be promoted by eco-labelling, chemical leasing concepts and extended information measures to enhance the demand of consumers and various actors in the supply chain for sustainable products. RECOMMENDATION AND PERSPECTIVE: Important tools for the promotion of sustainable chemistry are the abolition of barriers for innovation in legislation and within the chemical industry, more transparency for all users of chemical products, a new focus on sustainability in education and research, and a new way of thinking in terms of sustainability. 相似文献
Benzo[a]pyrene (BaP) biodegradation by Stenotrophomonas maltophilia was studied under the influence of co-existed Cu(II) ions. About 45% degradation was achieved within 3 d when dealing with 1 mg L?1 BaP under initial natural pH at 30 °C; degradation reached 48% in 2 d at 35 °C. Efficacy of BaP biodegradation reached the highest point at pH 4. In the presence of 10 mg L?1 Cu(II) ions, the BaP removal ratio was 45% on 7th day, and maintained stable from 7 to 14 d at 30 °C under natural pH. The favorable temperature and pH for BaP removal was 25 °C and 6.0 respectively, when Cu(II) ions coexisted in the solutions. Experiments on cometabolism indicated that S. maltophilia performed best when sucrose was used as an additional carbon source. GC–MS analysis revealed that the five rings of BaP opened, producing compounds with one or two rings which were more bioavailable. 相似文献