首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   1篇
  国内免费   2篇
安全科学   8篇
废物处理   18篇
环保管理   16篇
综合类   25篇
基础理论   11篇
环境理论   1篇
污染及防治   62篇
评价与监测   9篇
社会与环境   4篇
  2023年   6篇
  2022年   10篇
  2021年   7篇
  2020年   3篇
  2019年   5篇
  2018年   11篇
  2017年   4篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   23篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
31.
This study proposed to detect the enterovirus (EV) infection in children with type 1 diabetes mellitus (T1D) and to assess the role of insufficiently treated water and sewage as sources of viral spreading. Three hundred and eighty-two serum specimens of children with T1D, one hundred serum specimens of children who did not suffer from T1D as control, and forty-eight water and sewage samples were screened for EV RNA using nested RT-PCR. The number of genome copies and infectious units of EVs in raw and treated sewage and water samples were investigated using real-time (RT)-PCR and plaque assay, respectively. T1D markers [Fasting blood glucose (FBG), HbA1c, and C-peptide], in addition to anti-Coxsackie A & B viruses (CVs A & B) IgG, were measured in control, T1D-negative EV (T1D–EV?), and T1D-positive EV (T1D–EV+) children specimens. The prevalence of EV genome was significantly higher in diabetic children (26.2%, 100 out of 382) than the control children (0%, 0 out of 100). FBG and HbA1c in T1D–EV? and T1D–EV+ children specimens were significantly higher than those in the control group, while c-peptide in T1D–EV? and T1D–EV+ children specimens was significantly lower than that in the control (n = 100; p < 0.001). Positivity of anti-CVs A & B IgG was 70.7, 6.7, and 22.9% in T1D–EV+, T1D–EV?, and control children specimens, respectively. The prevalence of EV genome in drinking water and treated sewage samples was 25 and 33.3%, respectively. The prevalence of EV infectious units in drinking water and treated sewage samples was 8.5 and 25%, respectively. Quantification assays were performed to assess the capabilities of both wastewater treatment plants (WWTPs) and water treatment plants (WTPs) to remove EV. The reduction of EV genome in Zenin WWTP ranged from 2 to 4 log10, while the reduction of EV infectious units ranged from 1 to 4 log10. The reduction of EV genome in El-Giza WTP ranged from 1 to 3 log10, while the reduction of EV infectious units ranged from 1 to 2 log10. This capability of reduction did not prevent the appearance of infectious EV in treated sewage and drinking water. Plaque purification was performed for isolation of separate EV isolates from treated and untreated water and sewage samples. Characterization of the EV amplicons by RT-PCR followed by sequencing of these isolates revealed high homology (97%) with human coxsackievirus B4 (CV B4) in 60% of the isolates, while the rest of the isolates belonged to poliovirus type 1 and type 2 vaccine strains. On the other hand, characterization of the EV amplicons by RT-PCR followed by sequencing for T1D–EV+ children specimens indicated that all samples contained CV B4 with the same sequence characterized in the environmental samples. CV B4-contaminated drinking water or treated sewage may play a role as a causative agent of T1D in children.  相似文献   
32.

Water pollution and the unsustainable use of fossil fuel derivatives require advanced catalytic methods to clean waters and to produce fine chemicals from modern biomass. Classical homogeneous catalysts such as sulfuric, phosphoric, and hydrochloric acid are highly corrosive and non-recyclable, whereas heterogeneous catalysts appear promising for lignocellulosic waste depolymerization, pollutant degradation, and membrane antifouling. Here, we review the use of sulfonated graphene and sulfonated graphene oxide nanomaterials for improving membranes, pollutant adsorption and degradation, depolymerization of lignocellulosic waste, liquefaction of biomass, and production of fine chemicals. We also discuss the economy of oil production from biomass. Sulfonated graphene and sulfonated graphene oxide display an unusual large theoretical specific surface area of 2630 m2/g, allowing the reactants to easily enter the internal surface of graphene nanosheets and to reach active acid sites. Sulfonated graphene oxide is hydrophobic and has hydrophilic groups, such as hydroxyl, carboxyl, and epoxy, thus creating cavities on the graphene nanosheet’s surface. The adsorption capacity approached 2.3–2.4 mmol per gram for naphthalene and 1-naphthol. Concerning membranes, we observe an improvement of hydrophilicity, salt rejection, water flux, antifouling properties, and pollutant removal. The nanomaterials can be reused several times without losing catalytic activity due to the high stability originating from the stable carbon–sulfur bond between graphene and the sulfonic group.

  相似文献   
33.
Pollution of water bodies by trace metals is an established problem and several studies have been conducted to deal with it. South Africa is amongst those countries whose water systems are most affected as a result of intensive mining activities. This research was dedicated to the development of an insoluble chelating polymer for use as an adsorbent for abstraction of metal ions from mining and industrial wastewaters. Polyethylenimine (PEI), well known for its metal chelating potential, was cross-linked by epichlorohydrin (ECH) in order to convert it into a water-insoluble form for direct use as an adsorbent. The binding affinity of the cross-linked polyethylenimine (CPEI) to heavy metal ions was assessed as well as its ability to be regenerated for re-use. CPEI exhibited good complexation ability to metal ions with high affinity to Cr and most divalent metal ions. The observed order of complexation was: Cr?>?Zn>?Fe?>?Ni?>?Mn?>?Pb. On the other hand, it showed very poor ability to bind oxo-anions such as SeO3 2? and AsO2 ? which has been attributed to the unavailability of suitable functional groups to interact with these ions.  相似文献   
34.
Environmental Geochemistry and Health - The objective of this study was to assess worker exposure to mineral dust particles, and a metabolic model, based on the model adopted by ICRP, was applied...  相似文献   
35.
This paper discusses the results of an experimental program carried out to determine dust cloud deflagration parameters of selected solid-state hydrogen storage materials, including complex metal hydrides (sodium alanate and lithium borohydride/magnesium hydride mixture), chemical hydrides (alane and ammonia borane) and activated carbon (Maxsorb, AX-21). The measured parameters include maximum deflagration pressure rise, maximum rate of pressure rise, minimum ignition temperature, minimum ignition energy and minimum explosible concentration. The calculated explosion indexes include volume-normalized maximum rate of pressure rise (KSt), explosion severity (ES) and ignition sensitivity (IS). The deflagration parameters of Pittsburgh seam coal dust and Lycopodium spores (reference materials) are also measured. The results show that activated carbon is the safest hydrogen storage media among the examined materials. Ammonia borane is unsafe to use because of the high explosibility of its dust. The core insights of this contribution are useful for quantifying the risks associated with use of these materials for on-board systems in light-duty fuel cell-powered vehicles and for supporting the development of hydrogen safety codes and standards. These insights are also critical for designing adequate safety features such as explosion relief venting and isolation devices and for supplementing missing data in materials safety data sheets.  相似文献   
36.
Experimental and theoretical studies were conducted to investigate the pyrophoricity and water-reactivity risks associated with employing sodium alanate (NaAlH4) complex metal hydride in on-board vehicular hydrogen (H2) storage systems. The ignition and explosivity of NaAlH4 upon exposure to oxidizers in air or water were attributed to the spontaneous formation of stable hydroperoxyl intermediates on the NaAlH4 surface and/or H2 production, as well as the large driving force for NaAlH4 conversion to favorable hydroxide products predicted by atomic and thermodynamic modeling. The major products from NaAlH4 exposure to air: NaAl(OH)4, gibbsite and bayerite Al(OH)3, and Na2CO3 observed by XRD, were identified to be formed by surface-controlled reactions. The reactivity risks were significantly minimized, without compromising de-/re-hydrogenation cyclability, by compacting NaAlH4 powder into wafers to reduce the available surface area. These core findings are of significance to risk mitigation and H2 safety code and standard development for the safe use of NaAlH4 for on-board H2 storage in light-duty vehicles.  相似文献   
37.
Environmental Science and Pollution Research - Cleaning products are mixtures of many chemical ingredients that are known to contain sensitizers, disinfectants, and fragrances, as well as strong...  相似文献   
38.
A novel nanocomposite based on incorporation of multiwalled carbon nanotubes (MWCNTs) in polyvinyl chloride (PVC) was prepared. Proposed nanocomposite was coated on stainless steel wire by deep coating. Composition of nanocomposite was optimized based on results of morphological studies using scanning electron microscopy. The best composition (83% MWCNTs:17% PVC) was applied as a solid phase microextraction fiber. Complex mixture of aromatic (BTEX) and aliphatic hydrocarbons (C5–C34) were selected as model analytes, and performance of proposed fiber in extraction of the studied compounds from water and soil samples was evaluated. Analytical merits of the method for water samples (LODs = 0.10–1.10 ng L−1, r2 = 0.9940–0.9994) and for soil samples (LODs = 0.10–0.77 ng kg−1, r2 = 0.9946–0.9994) showed excellent characteristics of it in ultra trace determination of petroleum type environmental pollutants. Finally, the method was used for determination of target analytes in river water, industrial effluent and soil samples.  相似文献   
39.
This research work aims to investigate the synergistic effect of pozzolanic materials such as oil palm ash (OPA) and oil palm empty fruit bunch (OPEFB) on the developed hybrid polymer composites. The OPEFB and OPA fillers of different particle sizes (250, 150, and 75 µm) were mixed at OPEFB:OPA ratios of (0:100; 20:80; 40:60; 60:40; 80:20 and 100:0) and incorporated into an unsaturated polyester resin. Furthermore, both mechanical and morphological properties of the composites were analyzed and it was found that tensile, flexural, and impact properties were significantly improved at OPEFB:OPA of 75 µm particle size hybridization of the polymer. The increase of OPEFB to OPA filler ratio up to 80:20 significantly improved the tensile properties of the composites while 40:60 ratio of 75 µm gave the optimum filler ratio to obtain the highest flexural and impact properties of the composites among all studied samples. Scanning electron micrograph images showed strong particle dispersion of the embedded fillers with resin which explained the excellent mechanical strength enhancement of the composite.  相似文献   
40.
Environmental Science and Pollution Research - Accuracy in the prediction of the particulate matter (PM2.5 and PM10) concentration in the atmosphere is essential for both its monitoring and...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号