首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8199篇
  免费   96篇
  国内免费   244篇
安全科学   170篇
废物处理   402篇
环保管理   943篇
综合类   1374篇
基础理论   2011篇
污染及防治   2020篇
评价与监测   613篇
社会与环境   955篇
灾害及防治   51篇
  2023年   63篇
  2022年   138篇
  2021年   107篇
  2020年   72篇
  2019年   102篇
  2018年   148篇
  2017年   159篇
  2016年   223篇
  2015年   166篇
  2014年   264篇
  2013年   714篇
  2012年   283篇
  2011年   382篇
  2010年   315篇
  2009年   347篇
  2008年   400篇
  2007年   408篇
  2006年   315篇
  2005年   295篇
  2004年   292篇
  2003年   285篇
  2002年   269篇
  2001年   340篇
  2000年   216篇
  1999年   115篇
  1998年   86篇
  1997年   84篇
  1996年   107篇
  1995年   127篇
  1994年   96篇
  1993年   86篇
  1992年   91篇
  1991年   92篇
  1990年   80篇
  1989年   71篇
  1988年   69篇
  1987年   76篇
  1986年   52篇
  1985年   63篇
  1984年   63篇
  1983年   59篇
  1982年   58篇
  1981年   64篇
  1980年   47篇
  1979年   46篇
  1977年   38篇
  1976年   36篇
  1974年   34篇
  1973年   43篇
  1972年   51篇
排序方式: 共有8539条查询结果,搜索用时 0 毫秒
231.
Volatile organic compounds (VOCs) have been the focus of interest to understand atmospheric processes and their consequences in formation of ozone or aerosol particles; therefore, VOCs contribute to climate change. In this study, biogenic VOCs (BVOCs) emitted from Fagus sylvatica L. trees were measured in a dynamic enclosure system. In total 18 compounds were identified: 11 monoterpenes (MT), an oxygenated MT, a homoterpene (C14H18), 3 sesquiterpenes (SQT), isoprene and methyl salicylate. The frequency distribution of the compounds was tested to determine a relation with the presence of the aphid Phyllaphis fagi L. It was found that linalool, (E)-β-ocimene, α-farnesene and a homoterpene identified as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were present in significantly more samples when infection was present on the trees. The observed emission spectrum from F. sylvatica L. shifted from MT to linalool, α-farnesene, (E)-β-ocimene and DMNT due to the aphid infection. Sabinene was quantitatively the most prevalent compound in both, non-infected and infected samples. In the presence of aphids α-farnesene and linalool became the second and third most important BVOC emitted. According to our investigation, the emission fingerprint is expected to be more complex than commonly presumed.  相似文献   
232.
A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1–10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) “Supersite” shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m?3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m?3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m?3 (a factor of 10), 0.4 μg m?3, and 0.6 μg m?3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.  相似文献   
233.
Based on environmental monitoring data in 93 major cities and meteorological records at 398 weather stations in China from 1981 to 2007, total suspended particle (TSP) concentration, the intensity of dustfall, and sand and dust storm frequency (Fd) were analysed. During the past 27 years, the annual average TSP concentration (CTSP) in 93 cities was 402 μg m?3. Annual average CTSP decreased from the north to the south and from inland to the coast areas with a peak value of 628.8 μg m?3 in Lanzhou. In the 1980s, 1990s and 2000s, annual average CTSP was 628.7, 319.2, and 250.1 μg m?3, respectively. Annual average intensity of dustfall (Id) was 240.5 t km?2 a?1, decreased from northern to southern China and from inland to the coast areas with the maximum value of 717.2 t km?2 a?1 in Baotou. In the 1980s, 1990s and 2000s, annual average Id was 334.8, 220.9, 146 t km?2 a?1 respectively. Annual average Id in the Loess Plateau region was commonly higher than 200 t km?2 a?1. The annual average Fd decreased from arid regions in northwestern China to humid areas in southeastern China with two sand and sand storm centers existing in Xinjiang Taklamakan Desert and western Inner Mongolia. The annual average Fd in the 1980s, 1990s, 2000s was 16, 8, 6 days respectively, decreased steadily from 18 days in 1981–5 days in 2007. Annual average Id had a positive linear relation to annual average CTSP (R2 = 0.96). Annual average Fd had a positive relation with annual average CTSP (R2 = 0.97) as well as annual average Id (R2 = 0.94). TSP was the chief pollutant influencing Air Pollution Index (API) in northern China in spring and winter seasons. Sand and dust storm might be a major factor affecting the temporal variability and spatial distribution of TSP and dustfall in China.  相似文献   
234.
In Brazil, sugarcane fields are often burned to facilitate manual harvesting, and this burning causes environmental pollution from the large amounts of soot released into the atmosphere. This material contains numerous organic compounds such as PAHs. In this study, the concentrations of PAHs in two particulate-matter fractions (PM2.5 and PM10) in the city of Araraquara (SE Brazil, with around 200,000 inhabitants and surrounded by sugarcane plantations) were determined during the sugarcane harvest (HV) and non-harvest (NHV) seasons in 2008 and 2009. The sampling strategy included four campaigns, with 60 samples in the NHV season and 220 samples in the HV season. The PM2.5 and PM10 fractions were collected using a dichotomous sampler (10 L min?1, 24 h) with Teflon? filters. The filter sets were extracted (ultrasonic bath with hexane/acetone (1:1 v/v)) and analyzed by HPLC/Fluorescence. The median concentration for total PAHs (PM2.5 in 2009) was 0.99 ng m?3 (NHV) and 3.3 ng m?3 (HV). In the HV season, the total concentration of carcinogenic PAHs (benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene) was 5 times higher than in the NHV season. B(a)P median concentrations were 0.017 ng m?3 and 0.12 ng m?3 for the NHV and HV seasons, respectively. The potential cancer risk associated with exposure through inhalation of these compounds was estimated based on the benzo[a]pyrene toxic equivalence (BaPeq), where the overall toxicity of a PAH mixture is defined by the concentration of each compound multiplied by its relative toxic equivalence factor (TEF). BaPeq median (2008 and 2009 years) ranged between 0.65 and 1.0 ng m?3 and 1.2–1.4 ng m?3 for the NHV and HV seasons, respectively. Considering that the maximum permissible BaPeq in ambient air is 1 ng m?3, related to the increased carcinogenic risk, our data suggest that the level of human exposure to PAHs in cities surrounded by sugarcane crops where the burning process is used is cause for concern.  相似文献   
235.
Biodegradable dissolved organic carbon (BDOC) analyses and abiotic adsorption of dissolved organic carbon (DOC) from different wastewater effluent were conducted to evaluate biotic and abiotic removal mechanisms as a function of the initial DOC concentration and source of DOC using soil batch reactors. To obtain high DOC concentrations, a laboratory-scale reverse osmosis unit was used. It was found that BDOC fraction was independent of the initial DOC concentration and was dependent on the source of wastewater and/or the types of wastewater treatment. The BDOC fractions varied from 9 to 73%. Trickling filter effluent (Tucson, Arizona) showed the highest BDOC, ranging from 65 to 73% biodegradable, while wastewater treated by the soil aquifer treatment (SAT) (NW-4) was found to be most refractory, with DOC removals of 9 to 14%. For nitrified/denitrified tertiary effluent (Mesa, Arizona) and secondary effluent (Scottsdale, Arizona), 36 to 42% removal of DOC was observed during the BDOC test. The amount of BDOC in the wastewater depended not on the concentration of DOC, but on the effectiveness of pretreatment. Abiotic adsorption capacity of wastewater effluent varied from 6 to 18%. Molecular weight distribution analyses showed that more than 50% of DOC in the Scottsdale concentrate had a molecular weight of less than 1000 Da, and no significant change in distribution profiles occurred after approximately 12% abiotic adsorption with both soils with acclimated microorganisms (SAT soil) and soils without acclimated microorganisms (non-SAT soils). Hence, preferential adsorption was not observed and the presence of acclimated microbes did not influence adsorption.  相似文献   
236.
Although there is indisputable evidence that long-range atmospheric transport (LRAT) of organic contaminants occurs on a global scale, uncertainties remain about the detailed mechanism and extent of this phenomenon as well as the physical-chemical properties which facilitate LRAT. In this study, we discuss how mass balance models and monitoring data can contribute to a fuller understanding of the mechanism and extent of LRAT. Specifically we address the issues of "grasshopping" or "hopping" (the extent to which molecules are subject to multiple hops as distinct from a single emission-deposition event) and "global fractionation" (the differing behavior of chemicals as they are transported). It is shown that simple mass balance models can be used to assist the interpretation of monitoring data while also providing an instrument that can be used to assess the LRAT potential and the extent of hopping that organic substances may experience. The available evidence supports the notion that many persistent organic pollutants experience varying degrees of "hopping" during their environmental journey and as a consequence become fractionated with distance from source.  相似文献   
237.
Influence of plants on the methane emission from sediments   总被引:4,自引:0,他引:4  
Bazhin NM 《Chemosphere》2004,54(2):209-215
The previous theory [Chem. Global Change Sci. 3 (2001) 33; Chemosphere 50 (2003) 191] of methane emission is applied to vegetated sediments. The presence of roots in a sediment is taken into account. It is assumed that methane and nitrogen enter a sediment through channels existing in plants and roots. The rate of methane and nitrogen transport through plants and roots is proportional to the difference in concentrations in the layer and on the upper surface. It is established that as the vegetation density increases, the rate of methane transport increases so that with sufficient vegetation density, almost all methane passes to the atmosphere through plants. In this case, the value of bubble emission decreases to zero. The nitrogen transport rate through plants first increases and then decreases with increasing the vegetation density. The theory qualitatively and quantitatively describes the dependence of methane concentration on depth in the presence of plants. A comparison with the available experimental data on dissolved methane concentration and bubble composition indicates satisfactory agreement.  相似文献   
238.
In this paper, a comparison of various advanced oxidation processes (O3, O3/UV, H2O2/UV, O3/H2O2/UV, Fe2+/H2O2) and chemical treatment methods using Al2(SO4)3.18H2O, FeCl3 and FeSO4 for the chemical oxygen demand (COD) and color removal from a polyester and acetate fiber dyeing effluent is undertaken. Advanced oxidation processes (AOPs) showed a superior performance compared to conventional chemical treatment, which maximum achievable color and COD removal for the textile effluent used in this study was 50% and 60%, respectively. Although O3/H2O2/UV combination among other AOPs methods studied in this paper was found to give the best result (99% removal for COD and 96% removal for color), use of Fe2+/H2O2 seems to show a satisfactory COD and color removal performance and to be economically more viable choice for the acetate and polyester fiber dyeing effluent on the basis of 90% removal.  相似文献   
239.
We present one of the most comprehensive studies of night-time radical chemistry to date, from the Tropospheric ORganic CHemistry experiment (TORCH) in the summer of 2003. TORCH provided a wealth of measurements with which to study the oxidizing capacity of the atmosphere. The measurements provided input to a zero-dimensional box model which has been used to study night-time radical chemistry during the campaign. Average night-time predicted concentrations of OH (2.6 × 105 molecule cm?3), HO2 (2.9 × 107 molecule cm?3) and [HO2+ΣRO2] radicals (2.2 × 108 molecule cm?3) were an order of magnitude smaller than those predicted during the daytime. The model under-predicted the night-time measurements of OH, HO2 and [HO2+ΣRO2] radicals, on average by 41%, 16% and 8% respectively. Whilst the model captured the broad features of night-time radical behaviour, some of the specific features that were observed are hard to explain. A rate of radical production assessment was carried out for the whole campaign between the hours of 00:00 and 04:00. Whilst radical production was limited owing to the absence of photolytic reactions, production routes via the reactions of alkenes with O3 provided an effective night-time radical source. Nitrate radical concentrations were predicted to be 0.6 ppt on average with a peak of 18 ppt on August 9th during a polluted heat wave period. Overall, the nitrate radical contributes about a third of the total initiation via RO2, mostly through reaction with alkenes.  相似文献   
240.
A thermal/optical carbon analyzer (TOA), normally used for quantification of organic carbon (OC) and elemental carbon (EC) in PM2.5 (fine particulate matter) speciation networks, was adapted to direct thermally evolved gases to an electron impact quadrupole mass spectrometer (QMS), creating a TOA-QMS. This approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), but the ratios of the mass to charge (m/z) signals differ and must be remeasured using laboratory-generated standards. Linear relationships are found between TOA-QMS signals and ammonium (NH4+), nitrate (NO3?), and sulfate (SO42-) standards. For ambient samples, however, positive deviations are found for SO42-, compensated by negative deviations for NO3?, at higher concentrations. This indicates the utility of mixed-compound standards for calibration or separate calibration curves for low and high ion concentrations. The sum of the QMS signals across all m/z after removal of the NH4+, NO3?, and SO42- signals was highly correlated with the carbon content of oxalic acid (C?H?O?) standards. For ambient samples, the OC derived from the TOA-QMS method was the same as the OC derived from the standard IMPROVE_A TOA method. This method has the potential to reduce complexity and costs for speciation networks, especially for highly polluted urban areas such as those in Asia and Africa.

Implications: Ammonium, nitrate, and sulfate can be quantified by the same thermal evolution analysis applied to organic and elemental carbon. This holds the potential to replace multiple parallel filter samples and separate laboratory analyses with a single filter and a single analysis to account for a large portion of the PM2.5 mass concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号