首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96329篇
  免费   1249篇
  国内免费   1147篇
安全科学   3922篇
废物处理   3467篇
环保管理   14942篇
综合类   21476篇
基础理论   27359篇
环境理论   77篇
污染及防治   17155篇
评价与监测   5745篇
社会与环境   3962篇
灾害及防治   620篇
  2022年   817篇
  2021年   825篇
  2020年   674篇
  2019年   890篇
  2018年   1233篇
  2017年   1274篇
  2016年   2264篇
  2015年   1883篇
  2014年   2644篇
  2013年   9333篇
  2012年   2455篇
  2011年   2928篇
  2010年   3396篇
  2009年   3545篇
  2008年   2507篇
  2007年   2406篇
  2006年   2656篇
  2005年   2548篇
  2004年   2896篇
  2003年   2677篇
  2002年   2255篇
  2001年   2634篇
  2000年   2193篇
  1999年   1597篇
  1998年   1419篇
  1997年   1404篇
  1996年   1537篇
  1995年   1618篇
  1994年   1520篇
  1993年   1358篇
  1992年   1349篇
  1991年   1327篇
  1990年   1266篇
  1989年   1248篇
  1988年   1089篇
  1987年   1011篇
  1986年   1013篇
  1985年   1088篇
  1984年   1181篇
  1983年   1196篇
  1982年   1195篇
  1981年   1116篇
  1980年   958篇
  1979年   941篇
  1978年   840篇
  1977年   733篇
  1976年   664篇
  1974年   631篇
  1973年   657篇
  1972年   672篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
163.
Reversible double water in oil in water (W/O/W) emulsions were developed to contain subsurface hydrocarbon spills during their remediation using surfactant flushing. Double emulsions were prepared by emulsifying CaCl2 solutions in canola oil, and subsequently by emulsifying the W/O emulsions in aqueous sodium alginate solutions. The formation of double emulsions was confirmed with confocal and optical microscopy. The double emulsions reversed and gelled when mixed with the surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CPB). Gels can act as ‘emulsion locks’ to prevent spreading of the hydrocarbon plume from the areas treated with surfactant flushing, as shown in sand column tests. Shear rheology was used to quantify the viscoelastic moduli increase (gelation) upon mixing the double emulsion with SDS and CPB. SDS was more effective than CPB in gelling the double emulsions. CPB and SDS could adsorb at the interface between water and model hydrocarbons (toluene and motor oil), lowering the interfacial tension and rigidifying the interface (as shown with a Langmuir trough). Bottle tests and optical microscopy showed that SDS and CPB produced W/O and O/W emulsions, with either toluene or motor oil and water. The emulsification of motor oil and toluene in water with SDS and CPB facilitated their flow through sand columns and their recovery. Toluene recovery from sand columns was quantitated using Gas-Chromatography Mass-Spectroscopy (GC-MS). The data show that SDS and CPB can be used both for surfactant flushing and to trigger the gelation of ‘emulsion locks’. Ethanol also gelled the emulsions at 100 mL/L.  相似文献   
164.

The combination of concentrated solar power–chemical looping air separation (CSP-CLAS) with an oxy-fuel combustion process for carbon dioxide (CO2) capture is a novel system to generate electricity from solar power and biomass while being able to store solar power efficiently. In this study, the computer program Advanced System for Process Engineering Plus (ASPEN Plus) was used to develop models to assess the process performance of such a process with manganese (Mn)-based oxygen carriers on alumina (Al2O3) support for a location in the region of Seville in Spain, using real solar beam irradiance and electricity demand data. It was shown that the utilisation of olive tree prunings (Olea europaea) as the fuel—an agricultural residue produced locally—results in negative CO2 emissions (a net removal of CO2 from the atmosphere). Furthermore, it was found that the process with an annual average electricity output of 18 MW would utilise 2.43% of Andalusia’s olive tree prunings, thereby capturing 260.5 k-tonnes of CO2, annually. Drawbacks of the system are its relatively high complexity, a significant energy penalty in the CLAS process associated with the steam requirements for the loop-seal fluidisation, and the gas storage requirements. Nevertheless, the utilisation of agricultural residues is highly promising, and given the large quantities produced globally (~?4 billion tonnes/year), it is suggested that other novel processes tailored to these fuels should be investigated, under consideration of a future price on CO2 emissions, integration potential with a likely electricity grid system, and based on the local conditions and real data.

  相似文献   
165.
Seasonal variability of dissolved and particulate methylmercury(F-MeHg, P-MeHg) concentrations was studied in the waters of the Amazon River and its associated Curuai floodplain during hydrological year 2005–2006, to understand the MeHg exchanges between these aquatic systems. In the oxic white water lakes, with neutral pH, high F-MeHg and P-MeHg concentrations were measured during the rising water stage(0.70 ± 0.37 pmol/L, n = 26) and flood peak(14.19 ± 9.32 pmol/g, n = 7) respectively, when the Amazon River water discharge into the lakes was at its maximum. The lowest mean values were reported during the dry season(0.18 ± 0.07 pmol/L F-MeHg, n = 10 and 1.35 ± 1.24 pmol/g P-MeHg, n = 8), when water and suspended sediments were outflowing from the lakes into the River. In these lakes,the MeHg concentrations were associated to the aluminium and organic carbon/nitrogen changes. In the black water lakes, with acidic pH and reducing conditions, elevated MeHg concentrations were recorded(0.58 ± 0.32 pmol/L F-MeHg, n = 16 and 19.82 ± 15.13 pmol/g PMeHg, n = 6), and correlated with the organic carbon and manganese concentrations. Elevated values of MeHg partition coefficient(4.87 Kd 5.08 log(L/kg) indicate that MeHg is mainly transported associated with the particulate phase. The P-MeHg enrichment detected in all lakes suggests autochthonous MeHg inputs from the sediments into the water column. The MeHg mass balance showed that the Curuai floodplain is not the source of P-MeHg for the Amazon River.  相似文献   
166.
167.
168.
169.
170.
We undertook a detailed analysis of the lipid composition ofSolemya velum (Say), a bivalve containing endosymbiotic chemoautotrophic bacteria, in order to determine the presence of lipid biomarkers of endosymbiont activity. The symbiont-free clamMya arenaria (L.) and the sulfur-oxidizing bacteriumThiomicrospira crunogena (Jannasch et al.) were analyzed for comparative purposes. The 13C ratios of the fatty acids and sterols were also measured to elucidate potential carbon sources for the lipids of each bivalve species. Both fatty acid and sterol composition differed markedly between the two bivalves. The lipids ofS. velum were characterized by large amounts of 18: 17 (cis-vaccenic acid), 16:0, and 16 : 17 fatty acids, and low concentrations of the highly unsaturated plant-derived fatty acids characteristic of most marine bivalves. Cholest-5-en-3-ol (cholesterol) accounted for greater than 95% of the sterols inS. velum. In contrast,M. arenaria had fatty acid and sterol compositions similar to typical marine bivalves and was characterized by large amounts of the highly unsaturated fatty acids 20 : 53 and 22 : 63 and a variety of plant-derived sterols. The fatty acids ofT. crunogena were similar to those ofS. velum and were dominated by 18:17, 16:0 and 16:17 fatty acids. Thecis-vaccenic acid found inS. velum is almost certainly symbiontderived and serves as a potential biomarker for symbiontlipid incorporation by the host. The high concentrations ofcis-vaccenic acid (up to 35% of the total fatty acid content) in both symbiont-containing and symbiont-free tissues ofS. velum demonstrate the importance of the endosymbionts in the lipid metabolism of this bivalve. The presence ofcis-vaccenic acid in all the major lipid classes ofS. velum demonstrates both incorporation and utilization of this compound. The 13C ratios of the fatty acids and sterols ofS. velum were significantly lighter (–38.4 to –45.3) than those ofM. arenaria (–23.8 to – 24.2) and were similar to the values found for the fatty acids ofT. crunogena (–45); this suggests that the lipids ofS. velum are either derived directly from the endosymbionts or are synthesized using endosymbiontderived carbon.Woods Hole Oceanographic Institution Contribution No. 7356Please address all correspondence and reprint requests to Dr Conway at her present address: Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号