首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   313篇
  免费   19篇
  国内免费   8篇
安全科学   11篇
废物处理   12篇
环保管理   77篇
综合类   29篇
基础理论   82篇
污染及防治   74篇
评价与监测   43篇
社会与环境   11篇
灾害及防治   1篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   10篇
  2018年   13篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   39篇
  2012年   13篇
  2011年   12篇
  2010年   9篇
  2009年   8篇
  2008年   12篇
  2007年   18篇
  2006年   19篇
  2005年   10篇
  2004年   9篇
  2003年   14篇
  2002年   8篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   5篇
  1987年   6篇
  1985年   3篇
  1984年   7篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   8篇
  1978年   1篇
  1977年   3篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有340条查询结果,搜索用时 421 毫秒
61.
62.
Policies such as the US Healthy Forests Restoration Act (HFRA) mandate collaboration in planning to create benefits such as social learning and shared understanding among partners. However, some question the ability of top-down policy to foster successful local collaboration. Through in-depth interviews and document analysis, this paper investigates social learning and transformative learning in three case studies of Community Wildfire Protection Planning (CWPP), a policy-mandated collaboration under HFRA. Not all CWPP groups engaged in social learning. Those that did learned most about organisational priorities and values through communicative learning. Few participants gained new skills or knowledge through instrumental learning. CWPP groups had to commit to learning, but the design of the collaborative-mandate influenced the type of learning that was most likely to occur. This research suggests a potential role for top-down policy in setting the structural context for learning at the local level, but also confirms the importance of collaborative context and process in fostering social learning.  相似文献   
63.
Ambient ozone measurements in the United States and many other countries are traceable to a National Institute of Standards and Technology Standard Reference Photometer (NIST SRP). The NIST SRP serves as the highest level ozone reference standard in the United States, with NIST SRPs located at NIST and at many U.S. Environmental Protection Agency (EPA) laboratories. The International Bureau of Weights and Measures (BIPM) maintains a NIST SRP as the reference standard for international measurement comparability through the International Committee of Weights and Measures (CIPM). In total, there are currently NIST SRPs located in 20 countries for use as an ozone reference standard. A detailed examination of the NIST SRP by the BIPM and NIST has revealed a temperature gradient and optical path-length bias inherent in all NIST SRPs. A temperature gradient along the absorption cells causes incorrect temperature measurements by as much as 2 °C. Additionally, the temperature probe used for temperature measurements was found to inaccurately measure the temperature of the sample gas due to a self-heating effect. Multiple internal reflections within the absorption cells produce an actual path length longer than the measured fixed length used in the calculations for ozone mole fractions. Reflections from optical filters located at the exit of the absorption cells add to this effect. Because all NIST SRPs are essentially identical, the temperature and path-length biases exist on all units by varying amounts dependent upon instrument settings, laboratory conditions, and absorption cell window alignment. This paper will discuss the cause of, and physical modifications for, reducing these measurement biases in NIST SRPs. Results from actual NIST SRP bias upgrades quantifying the effects of these measurement biases on ozone measurements are summarized.

Implications: NIST SRPs are maintained in laboratories around the world underpinning ozone measurement calibration and traceability within and between countries. The work described in this paper quantifies and shows the reduction of instrument biases in NIST SRPs improving their overall agreement. This improved agreement in all NIST SRPs provides a more stable baseline for ozone measurements worldwide.  相似文献   
64.
We measured major PBDEs and PCBs in breast adipose tissues of California women participating in a breast cancer study in the late 1990s. Samples were analyzed using gas chromatography with electron impact ionization and tandem mass spectrometry detection. The congener profile observed was: BDE47>BDE99>BDE153>BDE100>BDE154 and PCB153>PCB180>PCB138>PCB118. Whereas high correlations were observed within each chemical class, very weak correlations appeared between classes, pointing to different exposure pathways. Weak negative associations were observed for PBDE congeners and age. Our PBDE data are among the highest reported, exceeding data from the National Health and Nutrition Examination Survey and consistent with the high use of PBDEs in California. These data may be helpful in establishing a baseline for PBDE body burdens to gauge changes over time as a result of restrictions in the use of PBDE formulations.  相似文献   
65.
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well‐known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as the primary example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real‐time nutrient data. The concurrent emergence of new tools to integrate, manage, and share large datasets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous monitoring to rapidly move forward. We highlight several near‐term opportunities for federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large‐scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation's water resources.  相似文献   
66.
Modern process plants are complex engineering systems. While thorough reviews of system safeguards are performed, catastrophic events continue to occur, often unfolding in unforeseen ways. Success in process safety demands safe processes, and understanding rare, high consequence events is central to the traditional process safety approach. This philosophy is common to all high-hazard industries, offering the potential for sharing approaches, experience, and lessons learned. The problem, however, is that people (and organizations and entire industries) who fear failure (atychiphobia) sometimes obsess about failure so much that they miss opportunities to succeed.This paper examines selected risk management practices in the power generation and aerospace industries and how those practices have led to improved performance. Risk informed decision making (RIDM) has had widespread application in the nuclear and aerospace industries, and is undergoing enhancements to become a key framework for risk management. Additionally, rather than focusing on avoidance of loss, there are emerging approaches supporting achievement of success. This approach provides a more direct link of risk to business and operational objectives, but does challenge conventional risk approaches founded in a loss prevention-centric view. The paper reflects upon risk informed decision making and success modeling, and suggests how these methods may be applied in the field of process safety. Specific examples are drawn from the defense in depth approach from the nuclear power industry and mission success concepts developed for NASA.  相似文献   
67.
Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.  相似文献   
68.
New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.  相似文献   
69.
Investigations surrounding the variability of productivity in upwelling regions are necessary for a better understanding the physical-biological coupling in these regions by monitoring systems of environmental impacts according to the needs of the regional coastal management. Using a spatial and temporal database from National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric (NCAR) Research reanalysis, Quick Scatterometer vector wind, and surface stations from the Southeast coast of Brazil, we investigate the meteorological influences due to the large-scale systems in the variability of the nutrient and larvae concentration, and chlorophyll a, describing statistically relationships between them in upwelling regions. In addition, we used multivariate analysis, such as PCA and clustering to verify spatial and temporal variances and describe more clear the structure and composition of the ecosystem. Correlation matrix analyses were applied for different water masses present in the study area to identify the relations between physical and biogeochemical parameters in a region, where frequently upwelling occur. Statistical approaches and seasonal variability show that the period of November to March is more sensitive to nutrients (1.20?mg/m(3) for chlorophyll a, 2.20?μmol/l for total nitrogen and 5.5?ml/l for DO) and larvae concentrations (120 org/m(3) for most of the larvae, except for cirripedia that presented values around 370 org/m(3)) relating to the influence of large and mesoescale meteorological patterns. The spatial and temporal variables analyzed with multivariate approach show meaningful seasonality variance of the physical and biological samples, characterizing the principal components responsible for this variance in spring and summer (upwelling period), emphasizing the monitoring of species as crustaceans and mussels that are present in the local economy. Then, the spring and summer season are characterized by high productivity due to the occurrence of upwelling in this period.  相似文献   
70.
Volunteer monitoring of natural resources is promoted for its ability to increase public awareness, to provide valuable knowledge, and to encourage policy change that promotes ecosystem health. We used the case of volunteer macroinvertebrate monitoring (VMM) in streams to investigate whether the quality of data collected is correlated with data use and organizers' perception of whether they have achieved these outcomes. We examined the relation between site and group characteristics, data quality, data use, and perceived outcomes (education, social capital, and policy change). We found that group size and the degree to which citizen groups perform tasks on their own (rather than aided by professionals) positively correlated with the quality of data collected. Group size and number of years monitoring positively influenced whether a group used their data. While one might expect that groups committed to collecting good-quality data would be more likely to use it, there was no relation between data quality and data use, and no relation between data quality and perceived outcomes. More data use was, however, correlated with a group's feeling of connection to a network of engaged citizens and professionals. While VMM may hold promise for bringing citizens and scientists together to work on joint conservation agendas, our data illustrate that data quality does not correlate with a volunteer group's desire to use their data to promote regulatory change. Therefore, we encourage scientists and citizens alike to recognize this potential disconnect and strive to be explicit about the role of data in conservation efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号