首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   9篇
  国内免费   58篇
安全科学   7篇
废物处理   25篇
环保管理   51篇
综合类   123篇
基础理论   113篇
污染及防治   174篇
评价与监测   71篇
社会与环境   19篇
灾害及防治   3篇
  2023年   4篇
  2022年   10篇
  2021年   13篇
  2020年   14篇
  2019年   9篇
  2018年   9篇
  2017年   19篇
  2016年   25篇
  2015年   14篇
  2014年   23篇
  2013年   63篇
  2012年   12篇
  2011年   22篇
  2010年   25篇
  2009年   24篇
  2008年   23篇
  2007年   26篇
  2006年   24篇
  2005年   23篇
  2004年   18篇
  2003年   13篇
  2002年   19篇
  2001年   21篇
  2000年   11篇
  1999年   9篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   9篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   4篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1982年   5篇
  1979年   2篇
  1975年   3篇
  1974年   2篇
  1971年   4篇
  1966年   4篇
  1965年   5篇
  1964年   4篇
  1963年   5篇
  1961年   6篇
  1960年   2篇
  1958年   2篇
  1955年   2篇
排序方式: 共有586条查询结果,搜索用时 15 毫秒
61.
This study examines the effect of soil organic matter heterogeneity on equilibrium sorption and desorption of phenanthrene, naphthalene, 1,3,5-trichlorobenzene (1,3,5-TCB), and 1,2-dichlorobenzene (1,2-DCB) by soils and sediments. Two estuary sediments, a Pahokee peat (PP; Euic, hyperthermic Lithic Haplosaprist), and two subsamples (base- and acid-treated peat [TP] and acid-treated peat [FP]) of the peat were used as the sorbents. The contents of black carbon particles were quantified with a chemical extraction method. Petrographical examinations revealed the presence of the condensed soil and sediment organic matter (SOM) in Pahokee peat. The Freundlich isotherm model in two different forms was used to fit both sorption and desorption data. The results show that the sorption and desorption isotherms are generally nonlinear and that the apparent sorption-desorption hysteresis is present for phenanthrene and TCB. Detailed analysis of sorption data for the tested sorbent-sorbate systems indicates that black carbon is probably responsible for sorption isotherm nonlinearity for the two sediments, whereas the humic substances and kerogen may play the dominant role in nonlinear sorption by the peat. This investigation suggests that the microporosity of SOM is important for the hydrophobic organic contaminant (HOC) sorption capacity on the peat.  相似文献   
62.
ABSTRACT: Percent imperviousness is an important parameter in modeling the urban rainfall-runoff process and is usually determined using manual methods such as random sampling or conventional accounting methods. In this study two computerized methods are used for estimating the percent imperviousness of urban watersheds using high altitude remote sensing imagery. These methods include the Laser Image Processing Scanner and the Video-Tape Camera system. Imperviousness is directly estimated in the former method while in the latter it is estimated as a function of the statistics of the responses on emulsions of the imagery. The percent imperviousness computed by utilizing remote sensing imagery was used with the conceptual models of rainfall-runoff models. The models were applied to four urban watersheds and the runoff prediction results indicate that imperviousness determined by using remote sensing imagery was as accurate as that obtained by the manual methods, and that the use of remote sensing imagery requires significantly less time and money.  相似文献   
63.
印染RO浓水深度处理及回用   总被引:2,自引:0,他引:2  
采用Fenton-石灰苏打法耦合工艺对某印染厂印染反渗透(RO)浓水进行深度处理。通过实验研究了不同H2O2和Fe2+投加量、pH和反应时间对废水COD去除率的影响,以及不同石灰和碳酸钠投加量对废水硬度的脱除效果,出水回用于染色工段进行染色实验。结果表明,在pH=3.0,Fe2+投加量为1.5 mmol/L,H2O2投加量为3.75 mmol/L,反应时间为45 min,石灰和碳酸钠投加量分别为450 mg/L和1 000 mg/L的条件下,出水COD和硬度的去除率可分别达到73.9%和85.0%,耦合工艺出水水质符合该厂回用染色水标准,且减少了盐的使用,可实现印染RO浓水回用。  相似文献   
64.
65.
以宝钢不锈钢转炉(AOD)除尘新技术产生为背景,结合工程项目论述了除尘新技术在不锈钢转炉上应用的基本原理,并对其优点、实用性、实施效果以及产生的效益进行了客观评价,同时介绍了新技术在项目实际运行中取得的经验.  相似文献   
66.
Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km2) is estimated to be in excess of the N CL. Low CL values (3–8 kg N ha?1 yr?1) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3–15% of the forested and chaparral land areas are estimated to be in exceedance of the NO3? leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha?1 yr?1. In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha?1 yr?1, and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha?1 yr?1. Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.  相似文献   
67.
建筑物地基安全性监测是及时掌握建筑在施工和最初使用阶段地基是否出现异常变形的重要方法。本文根据大量工程监测实践,分析了建筑物地基安全性异常的表现形式及产生原因,总结了建筑物安全性监测应注意的几个问题。  相似文献   
68.
Abstract

Natural radionuclides have been proposed as a means of assessing the transport of ozone (O3) and aerosols in the troposphere. Beryllium-7 (7Be) is produced in the upper troposphere and lower stratosphere by the interaction of cosmogenic particles with atmospheric nitrogen and oxygen. 7Be has a 53.29-day half-life (478 keV γ) and is known to attach to fine particles in the atmosphere once it is formed. It has been suggested that O3 from aloft can be transported into rural and urban regions during stratospheric–tropospheric folding events leading to increased background levels of O3 at the surface. 7Be can be used as a tracer of upper atmospheric air parcels and the O3 associated with them. Aerosol samples with a 2.5-µm cutoff were collected during 12-hr cycles (day/night) for a 30-day period at Deer Park, TX, near Houston, in August– September of 2000, and at Waddell, AZ, near Phoenix, in June–July of 2001. A comparison of 7Be levels with 12-hr O3 averages and maxima shows little correlation. Comparison of nighttime and daytime O3 levels indicate that during the day, when mixing is anticipated to be higher, the correlation of 7Be with O3 in Houston is approximately twice that observed at night. This is consistent with mixing and with the anticipated loss of O3 by reaction with nitric oxide (NO) and dry deposition. At best, 30% of the O3 variance can be explained by the correlation with 7Be for Houston, less than that for Phoenix where no significant correlation was seen. This result is consistent with the intercept values obtained for 7Be correlations with either O3 24-hr averages or O3 12-hr maxima and is also in the range of the low O3 levels (25 ppb) observed at Deer Park during a tropical storm event where the O3 is attributable primarily to background air masses. That is, maximum background O3 level contributions from stratospheric sources aloft are estimated to be in the range of 15–30 ppb in the Houston, TX, and Phoenix, AZ, area, and levels above these are because of local tropospheric photochemical production.  相似文献   
69.
Abstract

The primary objective of this investigation was to determine the feasibility of using acid activated clays to clarify menhaden stickwater effluent. Experiments, such as physical and chemical properties determinations, effect of changes in pH and temperature and coagulation, and coagulation followed by clay treatment were also performed to study the separation of solids in stickwater.

Analysis of the stickwater showed that it contained 4.5% crude protein, 1.4% crude fat, 6.5% total solids, 1.13% ash and 93.1% water. At a wavelength of 575 um, the sample absorbed all the light and the percent transmittance was zero. When diluted 1:100 the percent transmittance was 0.39 at the same wavelength. Measured at 25°C the sample had a viscosity of 9.0 centipoises.

The results showed that the precipitation of fat increased with increasing temperatures, while the reverse was true for protein. A pH of 4.0 gave the maximum clarification at all temperatures employed. The viscosity decreased at pH values above and below the original pH of the sample.

Among the four different acid activated clays used in this study (trade names Supact‐150, Impact‐150, Impact‐12 and Impact‐1OORR), Impact‐150 was the most effective in protein and fat precipitation, and the degree of separation of these components increased by treating stickwater with a coagulant (aluminum sulfate) prior to treatment with acid activated clay.  相似文献   
70.
Abstract

The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President’s Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbonintensity fuels, and increased use of nuclear energy and renewables.

This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier.

Two technologies for storage of the captured CO2 are reviewed—sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies.

This review also includes discussion of possible problems related to deep injection of CO2 . There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring.

Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal seam. These hypotheses provide significant insight into the fundamental chemical, physical, and thermodynamic phenomena that occur during coal seam sequestration of CO2 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号