首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   0篇
  国内免费   2篇
安全科学   8篇
废物处理   10篇
环保管理   1篇
综合类   6篇
基础理论   15篇
污染及防治   62篇
评价与监测   24篇
社会与环境   4篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   9篇
  2017年   8篇
  2016年   13篇
  2015年   3篇
  2014年   8篇
  2013年   22篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   8篇
  2005年   6篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1993年   3篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
111.
The effect of chloride and sulfate ions on the oxidation of methyl tert-butyl ether (MTBE) and its degradation products in a Fenton-like system was studied. Although both chloride and sulfate ions inhibited the decomposition of H202, chlorides were found to be the more effective inhibitor of MTBE degradation. In the presence of sulfates, MTBE decomposition can be attributed to oxidation not only by hydroxyl radicals, but also likely by SO4*- species. In the presence of chloride ions, it is possible that the dichloride radical is formed, which is less reactive than OH*. In the system under investigation, t-butyl alcohol was found to be the major byproduct, followed by t-butyl formate and acetone. The degradation rates of all intermediates and their inhibition in the presence of inorganic ions are similar to those obtained for MTBE, although their distributions are related to the concentrations of inorganic salts added.  相似文献   
112.
This paper presents the nonselective degradation of mechanically pretreated oily wastewater by hydrogen peroxide (H2O2) in the presence and absence of UV irradiation. The effect of chemical oxidation on wastewater biodegradability was also examined. The exclusive use of H2O2 photolyzed by daylight results in quite efficient degradation rates for the low peroxide concentrations used. Higher hydrogen peroxide concentrations inhibit degradation of organic contaminants in the wastewater. The degradation rates of all contaminants are relatively high with an advanced oxidation system (UV/H2O2), but degradation efficiencies are not distinguishably different when 20 or 45 minutes of UV irradiation is used. The excess of H2O2 used in the process can inhibit phenolic degradation and may lead to the formation of a new phenolic fraction. The biodegradability of port wastewater did not increase significantly following the application of the advanced oxidation process.  相似文献   
113.
114.
Application of magnetic U(VI) ion imprinted polymers (IIPs) coated on magnetic nanoparticles was investigated for pre-concentration and determination of U(VI) ions in aqueous solutions. The scanning electron micrographs revealed the microporosity of the adsorbent. Uranium leaching was successful as the energy-dispersive X-ray spectra showed. The Brunauer–Emmett–Teller (BET) surface area improved by more than 13-fold (83.1 and 6.2 m2 g?1 for the leached and unleached magnetic IIP, respectively). U(VI) uptake was optimized using batch experiments with parameters affecting the uptake performance, such as initial uranium concentration, pH, contact time, and adsorbent dose investigated. Pseudo-second-order kinetics and the Langmuir isotherm model best fitted the experimental data. The maximum adsorption capacity of uranium onto the activated magnetic IIP reached 5.4 mg g?1. The selectivity order was determined to be U(VI) > Ni(II) > Th(IV).  相似文献   
115.
116.
The capillary electrophoresis (CE) method combined with a sequential extraction was applied to determine the distribution of Fe, Zn, Cu, Mn and Cd in urban ambient air PM2.5 samples. PM2.5 was collected on Teflon filters with dichotomous sampler, and the modified extraction procedure following the BCR leaching procedure was used to chemically fractionate metals into "easily exchangeable" with water, "acid extractable" with 0.11 mol/l acetic acid, "reducible" with 0.1 mol/l hydroxylamine hydrochloride acidified to pH 2.0 with nitric acid, and "oxidisable" with oxidation by 8.8 mol/l hydrogen peroxide (H2O2) followed by extraction with 1.0 mol/l ammonium acetate. Based on the obtained results it was concluded that the application of the studied methodology provides chemical fractionation data that reflect the general sources and potential health hazards of the studied metals.  相似文献   
117.
Environmental Science and Pollution Research - Escherichia coli bacteria are an essential indicator in evaluations of environmental pollution, which is why they must be correctly identified. This...  相似文献   
118.
This study is aimed at estimating organic compounds removal and sludge production in SBR during treatment of landfill leachate. Four series were performed. At each series, experiments were carried out at the hydraulic retention time (HRT) of 12, 6, 3 and 2d. The series varied in SBR filling strategies, duration of the mixing and aeration phases, and the sludge age. In series 1 and 2 (a short filling period, mixing and aeration phases in the operating cycle), the relationship between organics concentration (COD) in the leachate treated and HRT was pseudo-first-order kinetics. In series 3 (with mixing and aeration phases) and series 4 (only aeration phase) with leachate supplied by means of a peristaltic pump for 4h of the cycle (filling during reaction period) - this relationship was zero-order kinetics. Activated sludge production expressed as the observed coefficient of biomass production (Y(obs)) decreased correspondingly with increasing HRT. The smallest differences between reactors were observed in series 3 in which Y(obs) was almost stable (0.55-0.6 mg VSS/mg COD). The elimination of the mixing phase in the cycle (series 4) caused the Y(obs) to decrease significantly from 0.32 mg VSS/mg COD at HRT 2d to 0.04 mg VSS/mg COD at HRT 12d. The theoretical yield coefficient Y accounted for 0.534 mg VSS/mg COD (series 1) and 0.583 mg VSS/mg COD (series 2). In series 3 and 4, it was almost stable (0.628 mg VSS/mg COD and 0.616 mg VSS/mg COD, respectively). After the elimination of the mixing phase in the operating cycle, the specific biomass decay rate increased from 0.006 d(-1) (series 3) to 0.032 d(-1) (series 4). The operating conditions employing mixing/aeration or only aeration phases enable regulation of the sludge production. The SBRs operated under aerobic conditions are more favourable at a short hydraulic retention time. At long hydraulic retention time, it can lead to a decrease in biomass concentration in the SBR as a result of cell decay. On the contrary, in the activated sludge at long HRT, a short filling period and operating cycle of the reactor with the mixing and aeration phases seem the most favourable.  相似文献   
119.
A novel microbiological mutagenicity assay, based on bioluminescence of a marine bacterium Vibrio harveyi mutant strain, potentially suitable for monitoring and assessment of mutagenic pollution of marine environment, has been described recently. Here, we tested the use of this assay, in combination with either mussels (Mytilus sp.) or semipermeable membrane devices (SPMDs), in assessment of accumulation of mutagens in marine water (samples of Baltic Sea water were tested). Either similar results were obtained in both systems or higher signals in the SPMD-based system were detected, depending on the tested water samples. We conclude that the use of both mussels and SPMDs in combination with the V. harveyi bioluminescence mutagenicity assay is a method suitable for monitoring and assessment of accumulation of mutagenic pollutants in marine environment, but in some cases the SPMD-based system may provide a more sensitive test.  相似文献   
120.
In this study, the semipermeable membrane device (SPMD) passive samplers were used to determine freely dissolved concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in selected water bodies situated in and around Johannesburg City, South Africa. The devices were deployed for 14 days at each sampling site in spring and summer of 2011. Time weighted average (TWA) concentrations of the water-borne contaminants were calculated from the amounts of analytes accumulated in the passive samplers. In the area of interest, concentrations of analytes in water ranged from 33.5 to 126.8 ng l?1 for PAHs, from 20.9 to 120.9 pg l?1 for PCBs and from 0.2 to 36.9 ng l?1 for OCPs. Chlorinated pesticides were mainly composed of hexachlorocyclohexanes (HCHs) (0.15–36.9 ng l?1) and dichlorodiphenyltrichloromethane (DDT) with its metabolites (0.03–0.55 ng l?1). By applying diagnostic ratios of certain PAHs, identification of possible sources of the contaminants in the various sampling sites was performed. These ratios were generally inclined towards pyrogenic sources of pollution by PAHs in all study sites except in the Centurion River (CR), Centurion Lake (CL) and Airport River (AUP) that indicated petrogenic origins. This study highlights further need to map up the temporal and spatial variations of these POPs using passive samplers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号