首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9705篇
  免费   0篇
  国内免费   6篇
安全科学   1篇
废物处理   768篇
环保管理   1209篇
综合类   946篇
基础理论   3114篇
污染及防治   1757篇
评价与监测   1015篇
社会与环境   901篇
  2023年   3篇
  2022年   9篇
  2021年   8篇
  2020年   3篇
  2019年   2篇
  2018年   1475篇
  2017年   1374篇
  2016年   1194篇
  2015年   130篇
  2014年   15篇
  2013年   13篇
  2012年   464篇
  2011年   1345篇
  2010年   691篇
  2009年   597篇
  2008年   882篇
  2007年   1228篇
  2006年   4篇
  2005年   22篇
  2004年   32篇
  2003年   61篇
  2002年   99篇
  2001年   14篇
  2000年   10篇
  1999年   2篇
  1998年   10篇
  1984年   12篇
  1983年   8篇
  1980年   2篇
  1935年   2篇
排序方式: 共有9711条查询结果,搜索用时 12 毫秒
421.
Synthetic organic dyes are extensively used in consumer products from textile to pharmaceuticals. A large amount of organic dyes is ultimately discharged as effluent into water bodies, thus posing a serious threat to environment and life. Therefore, removal of dyes from water bodies is needed. To address this problem, various synthetic and natural materials have been used to adsorb dyes. Here, we review the application of polyurethane for removal of organic dyes. First, we review the application of simple and modified polyurethane as efficient and economic adsorbents for dyes. Secondly, we review the polyurethane-based membranes for separation and adsorption of various dyes. Thirdly, we describe polyurethane composites with improved efficiency of dyes removal. Finally, we review the bioremediation of dyes where polyurethane has been proven as an excellent inert support.  相似文献   
422.
In Brazil, few studies have been conducted about the assimilation of carbon and biomass accumulation in mangroves despite its great role as a carbon sink. In this sense, this study aimed to estimate the aboveground biomass (AGB) and carbon stocked by mangrove species in a stretch along the Piraquê-Açu River in southeastern Brazil, and to verify their relation with some soil parameters. For such, the height and diameter of all trees inside six plots of 100 m2 were measured and used to quantify AGB through an allometric equation, and soil samples were collected to calculate granulometry, humidity, time of infiltration and permeability. Multiple regressions were used to identify relations between AGB and soil parameters. A total of 296 trees were found in the area and the AGB and carbon assimilated were 2.92 t ha?1 and 1.46 t ha?1, respectively. Laguncularia racemosa was the most abundant species and contributed with 61% of these values. Only a positive relation between AGB/carbon of L. racemosa and soil humidity was found, probably due to the substrate characteristics which contain a large concentration of silt/clay, and may store more water and do not yet provide firmness to the roots. By comparison, this mangrove had a low amount of AGB and carbon stocked and has yet to develop structurally. Along with other ecological functions and its associated ecosystem services such as supplying food for the local community, these features highlight the importance to conserve the studied mangrove and the interlinked coastal ecosystems.  相似文献   
423.
Copper recovery is the core of waste printed circuit boards (WPCBs) treatment. In this study, we proposed a feasible and efficient way to recover copper from WPCBs concentrated metal scraps by direct electrolysis and factors that affect copper recovery rate and purity, mainly CuSO4·5H2O concentration, NaCl concentration, H2SO4 concentration and current density, were discussed in detail. The results indicated that copper recovery rate increased first with the increase of CuSO4·5H2O, NaCl, H2SO4 and current density and then decreased with further increasing these conditions. NaCl, H2SO4 and current density also showed a similar impact on copper purity, which also increased first and then decreased. Copper purity increased with the increase of CuSO4·5H2O. When the concentration of CuSO4·5H2O, NaCl and H2SO4 was respectively 90, 40 and 118 g/L and current density was 80 mA/cm2, copper recovery rate and purity was up to 97.32% and 99.86%, respectively. Thus, electrolysis proposes a feasible and prospective approach for waste printed circuit boards recycle, even for e-waste, though more researches are needed for industrial application.
  相似文献   
424.
The environmentally sustainable disposal and recycling of ever increasing volumes of electronic waste has become a global waste management issue. The addition of up to 25% polymeric waste PCBs (printed circuit boards) as fillers in polypropylene (PP) composites was partially successful: while the tensile modulus, flexural strength and flexural modulus of composites were enhanced, the tensile and impact strengths were found to decrease. As a lowering of impact strength can significantly limit the application of PP based composites, it is necessary to incorporate impact modifying polymers such as rubbery particles in the mix. We report on a novel investigation on the simultaneous utilization of electronic and automotive rubber waste as fillers in PP composites. These composites were prepared by using 25 wt.% polymeric PCB powder, up to 9% of ethylene propylene rubber (EPR), and PP: balance. The influence of EPR on the structural, thermal, mechanical and rheological properties of PP/PCB/ EPR composites was investigated. While the addition of EPR caused the nucleation of the β crystalline phase of PP, the onset temperature for thermal degradation was found to decrease by 8%. The tensile modulus and strength decreased by 16% and 19%, respectively; and the elongation at break increased by ~71%. The impact strength showed a maximum increase of ~18% at 7 wt.%–9 wt.% EPR content. Various rheological properties were found to be well within the range of processing limits. This novel eco-friendly approach could help utilize significant amounts of polymeric electronic and automotive waste for fabricating valuable polymer composites.
  相似文献   
425.
Leaching behavior and gastrointestinal bioaccessibility of rare earth elements (REEs) from hospital waste incineration (HWI) fly and bottom ash samples collected from Beijing and Nanjing Cities were assessed. In the same ash sample, the leaching concentrations of individual REEs determined by the Toxicity Characteristic Leaching Procedure (TCLP) were higher than those detected by the European standard protocol (EN-type test), thereby suggesting that the low pH value of leaching solution was an important factor influencing the leachability of REE. The REE bioaccessibility results, which were evaluated using the physiologically based extraction test (PBET), indicated that REEs were highly absorbed during gastric phase by dissolution; and subsequently precipitated and/or re-adsorbed in small intestinal phase. The relative amounts of the total REEs extracted by the TCLP method, EN-type test and PBET test were compared. In addition to the pH value of extraction solutions, the chelating role of REEs with organic ligands used in the PBET method was also an important parameter affecting REE adsorption in human body. Additionally, this study showed that REEs were extracted by these methods as concomitants of heavy metals and anions (NO3 , F, SO4 2–, and Cl) from HWI ash, which probably caused the remarkably complex toxicity on human body by the exposure pathway.
  相似文献   
426.
This first nationwide survey was conducted to evaluate the overall performance of the circulating fluidized bed (CFB) incineration of municipal solid waste (MSW) in 2014-2015 in China. Total 23 CFB incineration power plants were evaluated. The data for monthly average flue gas emission of particles, CO, NO x , SO2 and HCl were collected over 12 consecutive months. The data were analyzed to assess the overall performance of CFB incineration by applying the Mahalanobis distance as a multivariate outlier detection method. Although the flue gas emission parameters had met the Chinese national emission standards, there were 11 total outliers (abnormal behavior) detected in 6 out of 23 CFB incineration power plants from the perspective of the MSWincineration performance. The results demonstrate that it is more important for a better performance of CFBs to reduce the frequencies of the MSW load changes, rather than the magnitudes of the MSW load changes, particularly reducing the frequencies in the range of 10% and more of the load changes, under the same and stable conditions. Furthermore, the overloading occurs more often than the underloading during the operation of the CFB incineration power plants in China. The frequent overloading is 0% to 30% of the designed capacity. To achieve the stable performance of CFBs in practice, an appropriately designed MSW storage capacity is suggested to build in a plant to buffer and reduce the frequency of the load changes.
  相似文献   
427.
Characterization of the molecular properties of soluble microbial products (SMP) is critical for understanding the membrane filtration and fouling mechanisms in anaerobic and aerobic membrane bioreactors (AnMBR & MBR). In this study, the distributions of the absolute molecular weight and intrinsic viscosity of SMP polysaccharides from an AnMBR were effectively determined by a high performance size exclusion chromatography (HPSEC) that was coupled with the refractive index (RI), diode array UV (DAUV), right and low angle light scattering (LS), and viscometer (Vis) detectors. Based on the tetra-detector HPSEC determined absolute molecular weights and intrinsic viscosity, a universal calibration relationship for the SMP polysaccharides was developed and the molecular conformations, average molecular weights, and hydrodynamic sizes of the SMP polysaccharides were also explored. Two factors which can be derived from the tetra-detector HPSEC analysis were proposed for the characterization of the viscous and osmotic pressure properties of the SMP polysaccharides. In addition, it was also extrapolated how to analyze the resistance characteristics of the concentration polarization layers formed in membrane filtration based on the molecular properties determined by the tetra-detector HPSEC analysis.
  相似文献   
428.
In current debates on emerging technologies for plant breeding in Europe, much attention has been given to the regulatory status of these techniques and their public acceptance. At present, both genetically modified plants with cisgenic approaches—using genes from crossable species—as well as transgenic approaches—using genes from different species—fall under GMO regulation in the EU and both are mandatorily labelled as GMOs. Researchers involved in the early development of cisgenic GM plants convey the message that the potential use and acceptance of cisgenic approaches will be seriously hindered if GMO regulations are not adjusted. Although the similar treatment and labelling of transgenic and cisgenic plants may be a legitimate concern for the marketability of a cisgenic GM plant, there are concerns around their commercialization that reach beyond the current focus on (de)regulation. In this paper, we will use the development of the cisgenic GM potato that aims to overcome ‘late blight’—the most devastating potato disease worldwide—as a case to argue that it is important to recognize, reflect and respond to broader concerns than the dominant focus on the regulatory ‘burden’ and consumer acceptance. Based on insights we gained from discussing this case with diverse stakeholders within the agricultural sector and potato production in Norway during a series of workshops, we elaborate on additional issues such as the (technical) solution offered; different understandings of the late blight problem; the durability of the potato plant resistance; and patenting and ownership. Hence, this paper contributes to empirical knowledge on stakeholder perspectives on emerging plant breeding technologies, underscoring the importance to broaden the scope of the debate on the opportunities and challenges of agricultural biotechnologies, such as cisgenic GM plants. The paper offers policy-relevant input to ongoing efforts to broaden the scope of risk assessments of agricultural biotechnologies. We aim to contribute to the recognition of the complex socio-ecological, legal and political dimensions in which these technological developments are entangled as a means to acknowledge, discuss and respond to these concerns and thereby contribute to more comprehensive and responsible developments within agricultural biotechnology.  相似文献   
429.
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of “Green Chemistry” and “Green Engineering”, “Green Toxicology” aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.  相似文献   
430.
This study was conducted to assess the merits and limitations of various high-pressure membranes, tight nanofiltration (NF) membranes in particular, for the removal of trace organic compounds (TrOCs). The performance of a low-pressure reverse osmosis (LPRO) membrane (ESPA1), a tight NF membrane (NF90) and two loose NF membranes (HL and NF270) was compared for the rejection of 23 different pharmaceuticals (PhACs). Efforts were also devoted to understand the effect of adsorption on the rejection performance of each membrane. Difference in hydrogen bond formation potential (HFP) was taken into consideration. Results showed that NF90 performed similarly to ESPA1 with mean rejection higher than 95%. NF270 outperformed HL in terms of both water permeability and PhAC rejection higher than 90%. Electrostatic effects were more significant in PhAC rejection by loose NF membranes than tight NF and LPRO membranes. The adverse effect of adsorption on rejection by HL and ESPA1 was more substantial than NF270 and NF90, which could not be simply explained by the difference in membrane surface hydrophobicity, selective layer thickness or pore size. The HL membrane had a lower rejection of PhACs of higher hydrophobicity (log D>0) and higher HFP (>0.02). Nevertheless, the effects of PhAC hydrophobicity and HFP on rejection by ESPA1 could not be discerned. Poor rejection of certain PhACs could generally be explained by aspects of steric hindrance, electrostatic interactions and adsorption. High-pressure membranes like NF90 and NF270 have a high promise in TrOC removal from contaminated water.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号