首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   1篇
安全科学   1篇
废物处理   33篇
环保管理   9篇
综合类   16篇
基础理论   36篇
环境理论   1篇
污染及防治   42篇
评价与监测   3篇
社会与环境   7篇
灾害及防治   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   18篇
  2004年   13篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1995年   2篇
  1994年   2篇
  1992年   12篇
  1989年   3篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有149条查询结果,搜索用时 15 毫秒
71.
Atmospheric deposition of fixed nitrogen as nitrate and ammonium in rain and by dry deposition of nitrogen dioxide, nitric acid and ammonia has increased throughout Europe during the last two decades, from 2-6 kg N ha(-1) year(-1) to 15-60 kg N ha(-1) year(-1). The nitrogen contents of bryophytes and the ericaceous shrub Calluna vulgaris have been measured at a range of sites, with the objective of showing the degree to which nitrogen deposition is reflected in foliar plant nitrogen. Tissue nitrogen concentrations of herbarium bryophyte samples and current samples of the same species collected from the same sites were compared. No significant change in tissue nitrogen was recorded at a remote site in north-west Scotland where nitrogen inputs are small (< 6 kg N ha(-1) year(-1)). Significant increases in tissue N occurred at four sites ranging from 38% in central Scotland to 63% in Cumbria where nitrogen inputs range from 15 to 30 kg N ha(-1) year(-1). The relationships found between the estimated input of atmospheric nitrogen and the tissue nitrogen content of the selected bryophytes and Calluna at the sites investigated were found to be generally linear and fitted the form N(tissue) = 0.62 + 0.022 N(dep) for bryophytes and N(tissue) = 0.83 + 0.045 N(dep) for Calluna. There was thus an increase in total tissue nitrogen of 0.02 mg g(-1) dry weight for bryophytes and 0.045 mg g(-1) dry weight for Calluna for an increase in atmospheric nitrogen deposition of 1 kg ha(-1) year(-1). The lowest concentrations were found in north-west Scotland and the highest in Cumbria and the Breckland heaths of East Anglia, both areas of high atmospheric nitrogen deposition (30-40 kg N ha(-1) year(-1)). The implications of increased tissue nitrogen content in terms of vegetation change are discussed. Changes in atmospheric nitrogen deposition with time were also examined using measured values and values inferred from tissue nitrogen content of mosses. The rate of increase in nitrogen deposition is not linear over the 90-year period, and the increases were negligible over the period 1880-1915. However, during the period 1950 to 1990 the data suggest an increase in nitrogen deposition of 2 kg N ha(-1) every 10 years.  相似文献   
72.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.  相似文献   
73.
This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L?1). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption–oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles.  相似文献   
74.
The deposition of atmospheric N to soils provides sources of available N to the nitrifying and denitrifying microbial community and subsequently influences the rate of NO and N2O emissions from soil. We have investigated the influence of three different sources of enhanced N deposition on NO and N2O emissions 1) elevated NH3 deposition to woodlands downwind of poultry and pig farms, 2) increased wet cloud and occult N deposition to upland forest and moorland and 3) enhanced N deposition to trees as NO? 3 and NH+ 4 aerosol. Flux measurements of NO and N2O were made using static chambers in the field or intact and repacked soil cores in the laboratory and determination of N2O by gas chromatography and of NO by chemiluminescence analysis. Rates of N deposition to our study sites were derived from modelled estimates of N deposition, NH3 concentrations measured by passive diffusion and inference from measurements of the 210Pb inventory of soils under tree canopies compared with open grassland. NO and N2O emissions and KCl-extractable soil NH+ 4 and NO? 3 concentrations all increased with increasing N deposition rate. The extent of increase did not appear to be influenced by the chemical form of the N deposited. Systems dominated by dry-deposited NH3 downwind of intensive livestock farms or wet-deposited NH+ 4and NO? 3 in the upland regions of Britain resulted in approximately the same linear response. Emissions of NO and N2O from these soils increased with both N deposition and KCl extractable NH+ 4, but the relationship between NH+ 4 and N deposition (ln NH+ 4 = 0.62 ln Ndeposition+0.21, r 2 = 0.33, n = 43) was more robust than the relationship between N deposition and soil NO and N2O fluxes.  相似文献   
75.
The effects of body-size and temperature on moulting frequency of the shrimp Lysmata seticaudata Risso were examined under controlled laboratory conditions. Shrimp ranging in weight from approximately 0.4 to 1.14 g and maintained at 17°C exhibited intermoult periods of similar duration (20 d). On the other hand, small individuals (0.23 g) held at the same temperature moulted on the average every 14.5 d. Over a temperature range from 8° to 20°C mean intermoult periods were inversely and linearly related to temperature; an increase of 1 C0 resulted in a decrease in the intermoult period of approximately 1.5 d. Although temperature acted to regulate the intermoult period of each shrimp in increments of whole days, it had little effect on the time of moulting within any 24 h period, since moulting occurred more than 93% of the time between 18.00 and 08.00 hrs. The night-time moulting pattern also tended to be most pronounced at lower temperatures (8° and 13°C) and in larger individuals. Possible factors controlling this phenomenon and its occurrence in other crustacean species are discussed.  相似文献   
76.
The deposition of aerosols to trees has proved very difficult to quantify, especially in complex landscapes. However, trees are widely quoted to be efficient scavengers of particles from the atmosphere, and a growing proportion of the pollutant burden in the atmosphere is present in the aerosol phase. In this study, the deposition of aerosols onto woodland and grass was quantified at a range of locations throughout the West Midlands of England. The sites included mature deciduous woodland in Edgbaston, and Moseley, and mixed woodland at sites within Sutton Park, a large area of semi-natural vegetation. Aerosol deposition to areas of grassland close to the woodland at each site was also measured. Detailed inventories of 210Pb in soils within the woodland and in grassland soils, together with concentrations in the atmosphere and precipitation, provided the necessary data to calculate the long-term (about 40 years) annual deposition of sub-micron aerosols onto grassland and woodland. The soil inventories of 210Pb under woodland exceeded those under grass, by between 22% and 60%, with dry deposition contributing 24% of the total input flux for grass and 47% for woodland. The aerosol dry deposition velocity to grassland averaged 3.3 mm s-1 and 9 mm s-1 for woodland. The large deposition rates of aerosols onto woodland relative to grass or other short vegetation (× 3), and accumulation of heavy metals within the surface horizons of organic soils, leads to large concentrations in soils of urban woodland. Concentrations in the top 10 cm of these woodland soils averaged 252 mg kg-1 for Pb with peaks to 400 mg kg-1. Concentrations of Cd averaged 1.4 mg kg-1, Cu, 126 mg kg-1, Ni 23 mg kg-1 and Zn 173 mg kg-1. The accumulated Pb in urban woodland soils is shown to be large relative to UK emissions.  相似文献   
77.
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO? 3?N and NH+ 4?N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha?1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha?1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   
78.
Sinking rates of natural copepod fecal pellets   总被引:4,自引:0,他引:4  
Many pure samples of natural fecal pellets have been collected from mixed small copepods and from the pontellid copepod Anomalocera patersoni in the Ligurian Sea, using a specially designed pellet collection device. Sinking rates of fresh pellets and pellets aged up to 33 days have been determined at 14°C, the mean temperature of the essentially isothermal water column in the Ligurian Sea. Sinking rates of pellets collected during calm sea states increased with increasing pellet volume, but sinking rates of pellets collected during rough sea (Beaufort scale 6) showed little correlation with pellet size. Much of the variability in the sinking rate-pellet size relationships was the result of different pellet composition and compaction, but not pellet age. Pellets produced from laboratory diets of phytoplankton and phytoplankton-sediment mixes showed the expected wide variability in sinking rates, with sediment-ballasted pellets sinking much faster than pellets produced from pure algal diets; thus determination of vertical material fluxes in the sea using laboratory-derived fecal pellet sinking rates is unwarranted. Natural pellet sinking data for small copepods and A. patersoni have been combined with similar data for euphausiids, to yield sinking rates of roughly two orders of magnitude over three orders of magnitude in pellet volume. Pellets from small copepods sank at speeds too slow to be of much consequence to rapid material flux to the deep sea, but they undoubtedly help determine upper water distribution of materials. Recalculation of fecal pellet mass flux estimates from the literature, using our sinking rate data for natural small copepod pellets, yielded estimates about half those of previously published values. Earlier studies had concluded that small fecal pellets were of lesser significance to total material flux than fecal matter; our recalculation strengthens that conclusion. Pellets from large copepods and euphausiids, however, have the capability to transport materials to great depths, and probably do not substantially recycle materials near the surface. The fact that the majority of pellets which had previously been collected in deep traps by other workers were of a size comparable to pellets from our large copepods supports the contention that these larger pellets are the main ones involved in vertical flux.  相似文献   
79.
Two years of continuous measurements of SO2deposition fluxes to moorland vegetation are reported. The mean flux of 2.8 ng SO2 m-2 s-1 is regulated predominantly by surface resistance (r c) which, even for wet surfaces, was seldom smaller than 100 s m-1. The control of surface resistance is shown to be regulated by the ratio of NH3SO2 concentrations with an excess of NH3 generating the small surface resistances for SO2. A dynamic surface chemistry model is used to simulate the effects of NH3 on SO2 deposition flux and is able to capture responses to short-term changes in ambient concentrations of SO2, NH3 and meteorological conditions. The coupling between surface resistance and NH3/SO2 concentration ratios shows that the deposition velocity for SO2 is regulated by the regional pollution climate. Recent long-term SO2 flux measurements in a transect over Europe demonstrate the close link between NH3/SO2 concentrations and rc (SO2). The deposition velocity for SO2 is predicted to have increased with time since the 1970s and imply a 40% increase in v d at a site at which the annual mean ambient SO2 concentrations declined from 47 to 3 g m-3 between 1973 and 1998.  相似文献   
80.
Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号