首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   2篇
  国内免费   1篇
安全科学   6篇
废物处理   6篇
环保管理   49篇
综合类   18篇
基础理论   30篇
污染及防治   58篇
评价与监测   10篇
社会与环境   1篇
灾害及防治   5篇
  2023年   2篇
  2022年   2篇
  2020年   2篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   35篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2008年   2篇
  2007年   1篇
  2006年   16篇
  2005年   6篇
  2004年   4篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   8篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   6篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1965年   2篇
排序方式: 共有183条查询结果,搜索用时 125 毫秒
81.
82.
Conservation planning tends to focus on protecting species’ ranges or landscape connectivity but seldom both—particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species’ ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species’ ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.  相似文献   
83.
84.
85.
Climate change effects on hydroecology of arctic freshwater ecosystems   总被引:2,自引:0,他引:2  
In general, the arctic freshwater-terrestrial system will warm more rapidly than the global average, particularly during the autumn and winter season. The decline or loss of many cryospheric components and a shift from a nival to an increasingly pluvial system will produce numerous physical effects on freshwater ecosystems. Of particular note will be reductions in the dominance of the spring freshet and changes in the intensity of river-ice breakup. Increased evaporation/evapotranspiration due to longer ice-free seasons, higher air/water temperatures and greater transpiring vegetation along with increase infiltration because of permafrost thaw will decrease surface water levels and coverage. Loss of ice and permafrost, increased water temperatures and vegetation shifts will alter water chemistry, the general result being an increase in lotic and lentic productivity. Changes in ice and water flow/levels will lead to regime-specific increases and decreases in habitat availability/quality across the circumpolar Arctic.  相似文献   
86.
Salt marshes dominated by Spartina alterniflora and the associated networks of tidal creeks that drain them are characteristic geographical features of southeastern estuaries, important nursery habitat areas, and preferred sites for residential development. As the size of the coastal population increases, so has the number of requests for dock permits. With each new request for a dock permit, public concerns about the cumulative environmental impacts of dock proliferation on the coastal environment have increased. The objective of this particular study was to evaluate the impacts of shading by dock structures on stem densities of S. alterniflora in South Carolina coastal marshes. Shading impacts under individual docks were extrapolated to the tidal creek (local), county, and statewide scales. Dock structures were sampled both under and next to the walkway in the Charleston Harbor area of South Carolina. The density of S. alterniflora under docks was significantly lower than that which occurred next to the docks (i.e., 5 m away) for the short-form, tall-form, and both forms combined. We estimated that shading effects from dock structures in South Carolina decreased the stem density of S. alterniflora by 71%. Dock shading effects were small when evaluated from the perspective of the amount of marsh that occurs within specific tidal creeks (0.03–0.72%), in coastal counties at a maximum dock length (0.01–0.98%), or statewide (0.01–0.13%) at a maximum dock length. However, approximately 7,000 docks have been permitted over the last decade, resulting in a loss of salt marsh equivalent to 60 ha.1Denise M. Sangers present address: Office of Ocean and Coastal Resource Management, South Carolina Department of Health and Environmental Control, 1362 McMillan Avenue, Suite 400 Charleston, South Carolina 29405, USA. 2 A. Frederick Hollands present address: Hollings Marine Laboratory, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, South Carolina 29412, USA.  相似文献   
87.
ABSTRACT: The physical limnology of three modern wastewater stabilization ponds serving a small community in Minnesota was investigated over a 1-year period (July 1989 - October 1990). Water temperatures and associated meteorological parameters were recorded continuously; underwater light, dissolved oxygen, pH, and Secchi depth were measured intermittently (about weekly). Measurements of nutrients and planktonic species were made by other investigators. Water quality stratification dynamics were studied by analyzing variations of water temperature, dissolved oxygen, and pH distributions with time and over depth. Intermittent stratification and mixing of the shallow waste stabilization ponds (1–2 m deep) were documented and related to weather. The strong response of the ponds to seasonal and daily weather variations was observed. Three types of pond stratification conditions have been identified: (1) completely mixed during consecutive day and night, (2) stratified during the day and well-mixed during the night, and (3) continuously stratified during day and night. A diurnal cycle of stratification dynamics was first noticed in late April and persisted through summer and into fall. Differences in light attenuation and hence temperature stratification and DO distribution between pond 1 (primary), pond 2 (second primary) and pond 3 (secondary) in the wastewater treatment system were documented and related to different waste loading conditions. Temperature stratification affects chemical, microbial, and planktonic processes in the ponds. Results presented in this paper can be used to provide guidance for water quality sampling in monitoring of pond performance. Information on true mixing conditions is also needed to gain better understanding of important factors affecting pond operation, and for process simulations and reactor modeling of waste stabilization ponds.  相似文献   
88.
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent.  相似文献   
89.
ABSTRACT: Hydraulic geometry relationships, or regional curves, relate bankfull stream channel dimensions to watershed drainage area. Hydraulic geometry relationships for streams throughout North Carolina vary with hydrology, soils, and extent of development within a watershed. An urban curve that is the focus of this study shows the bankfull features of streams in urban and suburban watersheds throughout the North Carolina Piedmont. Seventeen streams were surveyed in watersheds that had greater than 10 percent impervious cover. The watersheds had been developed long enough for the streams to redevelop bankfull features, and they had no major impoundments. The drainage areas for the streams ranged from 0.4 to 110.3 square kilometers. Cross‐sectional and longitudinal surveys were conducted to determine the channel dimension, pattern, and profile of each stream and power functions were fitted to the data. Comparisons were made with regional curves developed previously for the rural Piedmont, and enlargement ratios were produced. These enlargement ratios indicated a substantial increase in the hydraulic geometry for the urban streams in comparison to the rural streams. A comparison of flood frequency indicates a slight decrease in the bankfull discharge return interval for the gaged urban streams as compared to the gaged rural streams. The study data were collected by North Carolina State University (NCSU), the University of North Carolina at Charlotte (UNC), and Charlotte Storm Water Services. Urban regional curves are useful tools for applying natural channel design in developed watersheds. They do not, however, replace the need for field calibration and verification of bankfull stream channel dimensions.  相似文献   
90.
ABSTRACT: An analysis of hydrograph recessions and rainfall data was performed to estimate the recession constants for two watersheds in the Luquillo mountains of Puerto Rico. To account for seasonal rainfall patterns, the data were grouped into dry and wet seasons. Sets of three Master Recession Curves (MRC) per season for each watershed were developed: one using the Matching Strip Method (MS) and two using variations of the Correlation Method (CM). These variations were the envelope line (CME) and the least squares regression (CMR). Other regression based analytical expressions that consider the streamflow recession as an autore‐gressive or an integrated moving average process were also applied. The regression based methods performed consistently better than the graphical ones and they proved to be faster, easier, and less subjective. The recession constants from these methods were then used to estimate the time it would take the streamflow to reach the critical Q99 flow duration. Based on this study, once the streamflow reaches Q90, water managers have 6 to 12 days warning before streamflow reaches critical levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号