首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19095篇
  免费   172篇
  国内免费   141篇
安全科学   369篇
废物处理   751篇
环保管理   1963篇
综合类   5068篇
基础理论   4262篇
环境理论   10篇
污染及防治   4637篇
评价与监测   1168篇
社会与环境   1123篇
灾害及防治   57篇
  2022年   145篇
  2021年   149篇
  2019年   127篇
  2018年   251篇
  2017年   233篇
  2016年   374篇
  2015年   290篇
  2014年   441篇
  2013年   1223篇
  2012年   499篇
  2011年   688篇
  2010年   570篇
  2009年   649篇
  2008年   736篇
  2007年   798篇
  2006年   696篇
  2005年   581篇
  2004年   600篇
  2003年   602篇
  2002年   560篇
  2001年   680篇
  2000年   463篇
  1999年   347篇
  1998年   228篇
  1997年   250篇
  1996年   248篇
  1995年   271篇
  1994年   266篇
  1993年   242篇
  1992年   211篇
  1991年   238篇
  1990年   225篇
  1989年   191篇
  1988年   190篇
  1987年   168篇
  1986年   167篇
  1985年   174篇
  1984年   187篇
  1983年   176篇
  1982年   194篇
  1981年   156篇
  1980年   152篇
  1979年   156篇
  1978年   156篇
  1977年   136篇
  1974年   128篇
  1967年   145篇
  1964年   124篇
  1963年   126篇
  1957年   125篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
701.
A new approach to the problem of environmental hazard assessment and monitoring for pollutant biodegradation reaction systems in the presence of uncertainty is proposed using soft sensor-based pollutant concentration dynamic profile reconstruction techniques. In particular, a robust reduced-order soft sensor is proposed that can be digitally implemented in the presence of inherent complexity and the inevitable model uncertainty. The proposed method explicitly incorporates all the available information associated with a process model characterized by varying degrees of uncertainty, as well as available sensor measurements of certain physicochemical quantities. Based on the above information, a reduced-order soft sensor is designed enabling the reliable reconstruction of pollutant concentration profiles in complex biodegradation systems that can not be always achieved due to physical and/or technical limitations associated with current sensor technology. The option of using the aforementioned approach to compute toxic load and persistence indexes on the basis of the reconstructed concentration profiles is also pursued. Finally, the performance of the proposed method is evaluated in two illustrative environmental hazard assessment case studies.  相似文献   
702.
In this paper, we investigate how mountain communities perceive and adapt to climatic and environmental change. Primary data were collected at community and household level through in-depth interviews, focus group discussions, and quantitative questionnaires covering 210 households in six villages of the West Karakoram (Hundur and Darkut in the Yasin Valley; Hussainabad, Altit, Gulmit, and Shiskat in the Hunza valley of Gilgit-Baltistan). The relevance of the area with respect to our scopes is manifold. First, this is one of the most extreme and remote mountainous areas of the world, characterized by complex and fragile institutional and social fabrics. Second, this region is one of the focal points of research for the hydro-meteo-climatological scientific community, because of its relevance in terms of storage and variability of water resources for the whole Indus basin, and for the presence of conflicting signals of climate change with respect to the neighboring regions. Third, the extreme hardships due to a changing environment, as well as to the volatility of the social and economic conditions are putting great stress on the local population. As isolating climate change as a single driver is often not possible, community perceptions of change are analyzed in the livelihood context and confronted with multi-drivers scenarios affecting the lives of mountain people. We compare the collected perceptions with the available hydro-climatological data, trying to answer some key questions such as: how are communities perceiving, coping with, and adapting to climatic and environmental change? Which are the most resorted adaptation strategies? How is their perception of change influencing the decision to undertake certain adaptive measures?  相似文献   
703.
In a world of shrinking habitats and increasing competition for natural resources, potentially dangerous predators bring the challenges of coexisting with wildlife sharply into focus. Through interdisciplinary collaboration among authors trained in the humanities, social sciences, and natural sciences, we reviewed current approaches to mitigating adverse human–predator encounters and devised a vision for future approaches to understanding and mitigating such encounters. Limitations to current approaches to mitigation include too much focus on negative impacts; oversimplified equating of levels of damage with levels of conflict; and unsuccessful technical fixes resulting from failure to engage locals, address hidden costs, or understand cultural (nonscientific) explanations of the causality of attacks. An emerging interdisciplinary literature suggests that to better frame and successfully mitigate negative human–predator relations conservation professionals need to consider dispensing with conflict as the dominant framework for thinking about human–predator encounters; work out what conflicts are really about (they may be human–human conflicts); unravel the historical contexts of particular conflicts; and explore different cultural ways of thinking about animals. The idea of cosmopolitan natures may help conservation professionals think more clearly about human–predator relations in both local and global context. These new perspectives for future research practice include a recommendation for focused interdisciplinary research and the use of new approaches, including human‐animal geography, multispecies ethnography, and approaches from the environmental humanities notably environmental history. Managers should think carefully about how they engage with local cultural beliefs about wildlife, work with all parties to agree on what constitutes good evidence, develop processes and methods to mitigate conflicts, and decide how to monitor and evaluate these. Demand for immediate solutions that benefit both conservation and development favors dispute resolution and technical fixes, which obscures important underlying drivers of conflicts. If these drivers are not considered, well‐intentioned efforts focused on human–wildlife conflicts will fail.  相似文献   
704.
The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait‐based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co‐occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue‐chemistry traits differed significantly between rare and common, co‐occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting.  相似文献   
705.
Automotive Shredder Residue (ASR) is a special waste that can be classified as either hazardous or non hazardous depending on the amount of hazardous substances and on the features of leachate gathered from EN12457/2 test. However both the strict regulation concerning landfills and the EU targets related to End-of-Life Vehicles (ELVs) recovery and recycling rate to achieve by 2015 (Directive 2000/53/EC), will limit current landfilling practice and will impose an increased efficiency of ELVs valorization. The present paper considers ELVs context in Italy, taking into account ASRs physical–chemical features and current processing practice, focusing on the enhancement of secondary materials recovery. The application in waste-to-energy plants, cement kilns or metallurgical processes is also analyzed, with a particular attention to the possible connected environmental impacts. Pyrolysis and gasification are considered as emerging technologies although the only use of ASR is debatable; its mixing with other waste streams is gradually being applied in commercial processes. The environmental impacts of the processes are acceptable, but more supporting data are needed and the advantage over (co-)incineration remains to be proven.  相似文献   
706.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
707.
Russian Journal of Ecology - The genetic and phenotypic structure (according to the fur color) of 14 sable samples from the Baikal mountain land (BML) has been studied by analyzing 257 animals for...  相似文献   
708.
Objective: Road traffic suicides typically involve a passenger car driver crashing his or her vehicle into a heavy vehicle, because death is almost certain due to the large mass difference between these vehicles. For the same reason, heavy-vehicle drivers typically suffer minor injuries, if any, and have thus received little attention in the research literature. In this study, we focused on heavy-vehicle drivers who were involved as the second party in road suicides in Finland.

Methods: We analyzed 138 road suicides (2011–2016) involving a passenger car crashing into a heavy vehicle. We used in-depth road crash investigation data from the Finnish Crash Data Institute.

Results: The results showed that all but 2 crashes were head-on collisions. Almost 30% of truck drivers were injured, but only a few suffered serious injuries. More than a quarter reported sick leave following their crash. Injury insurance compensation to heavy-vehicle drivers was just above €9,000 on average. Material damage to heavy vehicles was significant, with average insurance compensation paid being €70,500. Three out of 4 truck drivers reported that drivers committing suicide acted abruptly and left them little opportunity for preventive action.

Conclusions: Suicides by crashing into heavy vehicles can have an impact on drivers’ well-being; however, it is difficult to see how heavy-vehicle drivers could avoid a suicide attempt involving their vehicle.  相似文献   

709.
Concentrations of Cu, Zn, Cd, Pb, Ni, Co, Fe, Mn, and Hg were measured successively in water, sediments, and six macroalgal species belonging to three algal classes during 3 years (2008–2010) from Abu Qir Bay, Alexandria, Egypt: Chlorophyceae (Enteromorpha compressa, Ulva fasciata), Phaeophyceae (Padina boryana), and Rhodophyceae (Jania rubens, Hypnea musciformis, Pterocladia capillacea). The study aimed to assess the bioaccumulation potential of the seaweeds, as well as to evaluate the extent of heavy metal contamination in the selected study site. Metals were analyzed using atomic absorption spectrophotometry coupled with MH-10 hydride system. The obtained data showed that the highest mean concentrations of Cu, Zn, Fe, and Mn were recorded in E. compressa; Cd, Ni, and Hg exhibited their highest mean concentrations in P. boryana, while Pb and Co were found in J. rubens. Abundance of the heavy metals in the algal species was as follow: Fe?>?Mn?>?Zn?>?Pb?>?Ni?>?Co?>?Cu?>?Cd?>?Hg. E. compressa showed the maximum metal pollution index (MPI) which was 11.55. Bioconcentration factor (BCF) for the metals in algae was relatively high with a maximum value for Mn. The Tomlinson pollution load index (PLI) values for the recorded algal species were low, which ranged between 1.00 in P. boryana and 2.72 in E. compressa. Enrichment factors for sediments were low fluctuating between 0.43 for Hg to 2.33 for Mn. Accordingly, the green alga E. compressa, brown alga P. boryana, and red alga J. rubens can be nominated as bioindicators. Based on MPI and PLI indices, Abu Qir Bay in the present study is considered as low-contaminated area.  相似文献   
710.
A field dissipation study was conducted to evaluate the pre-harvest interval (PHI) and processing factor (PF) for kresoxim methyl (Ergon 44.3 SC) residues in grapes and during raisin making process at recommended dose (RD) and double the recommended dose (DRD). Kresoxim methyl residues dissipated following 1st-order kinetics with a half-life of 10 and 18 days at RD and DRD, respectively. The PHIs with respect to the European Union maximum residue limit (EU-MRL) of 1 mg kg?1 for grapes were 13 and 30 days at RD and DRD, respectively. The degradation data during grape to raisin making process were best fitted to nonlinear 1st?+?1st-order kinetics with a half-life ranging between 4 and 8 days for both shade drying and with raisin dryer at different doses. The PFs were 1.19 and 1.24 with shade drying and 1.09 and 1.10 with raisin dryer, respectively, which indicates concentration of the residues during raisin making process. The dietary exposure of kresoxim methyl on each sampling day was less than the respective maximum permissible intake both at RD and DRD. The residues of kresoxim methyl in market samples of grapes and raisins were well below the EU-MRL and were also devoid of any risk of acute toxicity related to dietary exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号