首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   4篇
安全科学   2篇
废物处理   1篇
环保管理   8篇
综合类   2篇
基础理论   3篇
污染及防治   4篇
评价与监测   2篇
  2023年   1篇
  2021年   2篇
  2019年   4篇
  2018年   3篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2006年   1篇
  2000年   1篇
  1990年   1篇
  1989年   1篇
  1967年   1篇
排序方式: 共有22条查询结果,搜索用时 46 毫秒
11.
12.
EPRI has conducted a number of studies to provide utilities with cost information on waste management for conventional wet scrubbing. Studies have characterized waste products; developed engineering designs for effective waste handling, disposal, and/or utilization; and estimated waste management costs. A study, completed in late 1986 evaluated spray dryer wastes. On a dollar-per-ton-disposed basis, spray dryer waste management costs were found to be higher than those for either conventional fly ash or scrubber sludge alone. Cost estimates for new and retrofit spray dryer applications must be revised upward from those produced earlier by EPRI.  相似文献   
13.
Abstract: Nitrate‐nitrogen (NO3‐N) concentrations in stream water often respond uniquely to changes in inter‐annual conditions (e.g., biological N uptake and precipitation) in individual catchments. In this paper, we assess (1) how the spatial distribution of NO3‐N concentrations varies across a dense network of nonnested catchments and (2) how relationships between multiple landscape factors [within whole catchments and hydrologically sensitive areas (HSAs) of the catchments] and stream NO3‐N are expressed under a variety of annual conditions. Stream NO3‐N data were collected during two synoptic sampling events across >55 tributaries and two synoptic sampling periods with >11 tributaries during summer low flow periods. Sample tributaries drain mixed land cover watersheds ranging in size from 0.150 to 312 km2 and outlet directly to Cayuga Lake, New York. Changes in NO3‐N concentration ratios between each sampling event suggest a high degree of spatial heterogeneity in catchment response across the Cayuga Lake Watershed, ranging from 0.230 to 61.4. Variations in NO3‐N concentrations within each of the large synoptic sampling events were also high, ranging from 0.040 to 8.7 mg NO3‐N/l (March) and 0.090 to 15.5 mg NO3‐N/l (October). Although Pearson correlation coefficients suggest that this variability is related to multiple landscape factors during all four sampling events, partial correlations suggest percentage of row crops in the catchments as the only similar factor in March and October and catchment area as the only factor during summer low flows. Further, the strength of the relationships is typically lower in the HSAs of catchment. Advancing current understanding of such variations and relationships to landscape factors across multiple catchments – and under a variety of biogeochemical and hydrological conditions – is important, as (1) nitrate continues to be employed as an indicator of regional aquatic ecosystem health and services and (2) a unified framework approach for understanding individual catchment processes is a rapidly evolving focus for catchment‐based science and management.  相似文献   
14.
The international development community is off-track from meeting targets for alleviating global malnutrition. Meanwhile, there is growing consensus across scientific disciplines that fish plays a crucial role in food and nutrition security. However, this ‘fish as food’ perspective has yet to translate into policy and development funding priorities. We argue that the traditional framing of fish as a natural resource emphasizes economic development and biodiversity conservation objectives, whereas situating fish within a food systems perspective can lead to innovative policies and investments that promote nutrition-sensitive and socially equitable capture fisheries and aquaculture. This paper highlights four pillars of research needs and policy directions toward this end. Ultimately, recognizing and working to enhance the role of fish in alleviating hunger and malnutrition can provide an additional long-term development incentive, beyond revenue generation and biodiversity conservation, for governments, international development organizations, and society more broadly to invest in the sustainability of capture fisheries and aquaculture.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01451-4) contains supplementary material, which is available to authorized users.  相似文献   
15.
Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act's frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science‐based efforts to provide safe, reliable sources of fresh water for present and future generations.  相似文献   
16.
In two cases of prenatally detected cystic hygroma with oligohydraminos, successful cytogenetic diagnosis of Turner syndrome was achieved using cells obtained from direct aspiration of the cystic hygroma. Exceptionally high levels of alpha-fetoprotein were found in the cystic hygroma fluid, as might be expected. However, the maternal serum alpha-fetoprotein levels were within normal limits. Elevated alpha-fetoprotein levels in ‘amniotic fluid’ noted previously in the literature may have resulted because of inadvertent tapping of the cystic hygroma. It is clear from our cases that maternal serum levels of alpha-fetoprotein will not necessarily be elevated and will not serve as a screening mechanism for cystic hygromas.  相似文献   
17.
Downstream flow in rivers is repeatedly delayed by hydrologic exchange with off‐channel storage zones where biogeochemical processing occurs. We present a dimensionless metric that quantifies river connectivity as the balance between downstream flow and the exchange of water with the bed, banks, and floodplains. The degree of connectivity directly influences downstream water quality — too little connectivity limits the amount of river water exchanged and leads to biogeochemically inactive water storage, while too much connectivity limits the contact time with sediments for reactions to proceed. Using a metric of reaction significance based on river connectivity, we provide evidence that intermediate levels of connectivity, rather than the highest or lowest levels, are the most efficient in removing nitrogen from Northeastern United States’ rivers. Intermediate connectivity balances the frequency, residence time, and contact volume with reactive sediments, which can maximize the reactive processing of dissolved contaminants and the protection of downstream water quality. Our simulations suggest denitrification dominantly occurs in riverbed hyporheic zones of streams and small rivers, whereas vertical turbulent mixing in contact with sediments dominates in mid‐size to large rivers. The metrics of connectivity and reaction significance presented here can facilitate scientifically based prioritizations of river management strategies to protect the values and functions of river corridors.  相似文献   
18.
Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the Clean Water Act. This paper has two objectives: (1) provide a framework to understand hydrological, chemical, and biological connectivity, focusing on how headwater streams and wetlands connect to and contribute to rivers; and (2) briefly review methods to quantify hydrological and chemical connectivity. Streams and wetlands affect river structure and function by altering material and biological fluxes to the river; this depends on two factors: (1) functions within streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial distribution of aquatic components. Biological connectivity is also affected by traits and behavior of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of variability in these factors, connectivity is not constant but varies over time and space. Connectivity can be quantified with field‐based methods, modeling, and remote sensing. Further studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems and to understand how impacts affect connectivity.  相似文献   
19.
20.
Protected areas (PAs) are expected to conserve nature and provide ecosystem services in perpetuity, yet widespread protected area downgrading, downsizing, and degazettement (PADDD) may compromise these objectives. Even iconic protected areas are vulnerable to PADDD, although these PADDD events are often unrecognized. We identified 23 enacted and proposed PADDD events within World Natural Heritage Sites and examined the history, context, and consequences of PADDD events in 4 iconic PAs (Yosemite National Park, Arabian Oryx Sanctuary, Yasuní National Park, and Virunga National Park). Based on insights from published research and international workshops, these 4 cases revealed the diverse pressures brought on by competing interests to develop or exploit natural landscapes and the variety of mechanisms that enables PADDD. Knowledge gaps exist in understanding of the conditions through which development pressures translate to PADDD events and their impacts, partially due to a lack of comprehensive PADDD records. Future research priorities should include comprehensive regional and country-level profiles and analysis of risks, impacts, and contextual factors related to PADDD. Policy options to better govern PADDD include improving tracking and reporting of PADDD events, establishing transparent PADDD policy processes, coordinating among legal frameworks, and mitigating negative impacts of PADDD. To support PADDD research and policy reforms, enhanced human and financial capacities are needed to train local researchers and to host publicly accessible data. As the conservation community considers the achievements of Aichi Target 11 and moves toward new biodiversity targets beyond 2020, researchers, practitioners, and policy makers need to work together to better track, assess, and govern PADDD globally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号