首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   1篇
  国内免费   1篇
安全科学   14篇
废物处理   5篇
环保管理   9篇
综合类   24篇
基础理论   25篇
污染及防治   87篇
评价与监测   13篇
社会与环境   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   1篇
  2013年   31篇
  2012年   6篇
  2011年   12篇
  2010年   7篇
  2009年   6篇
  2008年   10篇
  2007年   10篇
  2006年   1篇
  2005年   13篇
  2004年   3篇
  2003年   15篇
  2002年   6篇
  2001年   7篇
  2000年   11篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1970年   1篇
  1961年   1篇
  1949年   1篇
  1944年   1篇
  1942年   1篇
  1940年   2篇
  1939年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
131.
The eastern United States national parks experience some of the worst visibility conditions in the nation. To study these conditions, the Southeastern Aerosol and Visibility Study (SEAVS) was undertaken to characterize the size-dependent composition, thermodynamic properties, and optical characteristics of the ambient atmospheric particles. It is a cooperative three-year study that is sponsored by the National Park Service and the Electric Power Research Institute and its member utilities. The field portion of the study was carried out from July 15 to August 25, 1995. The study design, instrumental configuration, and estimation of aerosol types from particle measurements is presented in a companion paper. In the companion paper, we compare measurements of scattering at ambient conditions and as functions of relative humidity to theoretical predictions of scattering. In this paper, we make similar comparisons, but using statistical techniques. Statistically derived specific scattering associated with sulfates suggest that a reasonable estimate of sulfate scattering can be arrived at by assuming nominal dry specific scattering and treating the aerosols as an external mixture with ammoniation of sulfate accounted for and by the use of Tang's growth curves to predict water absorption. However, the regressions suggest that the sulfate scattering may be underestimated by about 10%. Regression coefficients on organics, to within the statistical uncertainty of the model, suggest that a reasonable estimate of organic scattering is about 4.0 m2/g. A new analysis technique is presented, which does not rely on comparing measured to model estimates of scattering to evoke an understanding of ambient aerosol growth properties, but rather relies on measurements of scattering as a function of relative humidity to develop actual estimates of f(RH) curves. The estimates of the study average f(RH) curve for sulfates compares favorably with the theoretical f(RH) curve for ammonium bisulfate, which is in turn consistent with the study average sulfate ammoniation corresponding to a molar ratio of NH4/SO4 of approximately one. The f(RH) curve for organics is not significantly different from one, suggesting that organics are weakly to nonhygroscopic.  相似文献   
132.
133.
The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metal-contaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban–rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban–rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.  相似文献   
134.
This paper discusses results of a research project designed to develop an empirical model that could be used as a tool to predict human visual sensitivity to plumes. The resultant probability of detection algorithm (PROBDET) allows one to estimate the probability of a plume of known size, shape and contrast being detected visually. As a basis for the algorithm, a series of laboratory experiments using a high threshold signal detection procedure and computer generated images of plumes with Gaussian luminance distributions was conducted to measure human visual sensitivity to plumes. Results of the laboratory experiments are compared with results of contrast sensitivity experiments that examined visual sensitivity to stimuli with square and sine wave luminance distributions. An example of the PROBDET algorithm is presented to demonstrate its potential

usefulness for assessing how probability of detection estimates change as plume size and contrast parameters vary. Since this research was designed to build on existing knowledge, a discussion of that knowledge and how it relates to the research conducted is also presented. The focus of this discussion is on the human visual system (HVS) and on how visual sensitivity is affected by factors such as the luminance of the stimulus and the surround, the luminance distribution of the stimulus, the size of the surround, and the size and spatial frequency characteristics of the stimulus.  相似文献   
135.
Hein CL  Ohlund G  Englund G 《Ambio》2012,41(Z3):303-312
Novel communities will be formed as species with a variety of dispersal abilities and environmental tolerances respond individually to climate change. Thus, models projecting future species distributions must account for species interactions and differential dispersal abilities. We developed a species distribution model for Arctic char Salvelinus alpinus, a freshwater fish that is sensitive both to warm temperatures and to species interactions. A logistic regression model using lake area, mean annual air temperature (1961-1990), pike Esox lucius and brown trout Salmo trutta occurrence correctly classified 95?% of 467 Swedish lakes. We predicted that Arctic char will lose 73?% of its range in Sweden by 2100. Predicted extinctions could be attributed both to simulated temperature increases and to projected pike invasions. The Swedish mountains will continue to provide refugia for Arctic char in the future and should be the focus of conservation efforts for this highly valued fish.  相似文献   
136.
Novel communities will be formed as species with a variety of dispersal abilities and environmental tolerances respond individually to climate change. Thus, models projecting future species distributions must account for species interactions and differential dispersal abilities. We developed a species distribution model for Arctic char Salvelinus alpinus, a freshwater fish that is sensitive both to warm temperatures and to species interactions. A logistic regression model using lake area, mean annual air temperature (1961–1990), pike Esox lucius and brown trout Salmo trutta occurrence correctly classified 95 % of 467 Swedish lakes. We predicted that Arctic char will lose 73 % of its range in Sweden by 2100. Predicted extinctions could be attributed both to simulated temperature increases and to projected pike invasions. The Swedish mountains will continue to provide refugia for Arctic char in the future and should be the focus of conservation efforts for this highly valued fish.  相似文献   
137.
Abstract

Existing quantitative standards/guidelines for fungi in indoor air issued by governmental agencies are based primarily on baseline data (rather than health effects data), and are either absolute (numerical) or relative (indoor/outdoor comparisons) or a combination of the two. The Russian Federation is the only governmental agency that has binding quantitative regulations for bioaerosols. Recommended guidelines have been proposed or sponsored by North American and European governmental agencies and private professional organizations. A considerable number of frequently cited guidelines have been proposed by individuals based either on baseline data or on personal experience. Quantitative standards/guidelines range from less than 100 CFU/ m3 to greater than 1000 CFU/m3 (total fungi) as the upper limit for non-contaminated indoor environments.

Major issues with existing quantitative standards and guidelines are the lack of connection to human dose/response data, reliance on short term grab samples analyzed only by culture, and the absence of standardized protocols for data collection, analysis, and interpretation. Urgent research needs include the study of human responses to specific fungal agents, development and widespread use of standard protocols using currently available sampling methodologies, and the development of long term, time-discriminating personal samplers that are inexpensive, easy to use, and amenable to straightforward, relevant analysis.  相似文献   
138.
ABSTRACT

Routine air quality monitoring produces filter samples that, when analyzed, yield the total amount of the aerosol present in the volume of air drawn by the pump in the monitoring device during the given sampling period. From this we obtain an average concentration of the aerosol for the given duration. The samples are therefore really aggregate samples. A natural question then is “what is the effect of the duration of aggregation on the accuracy and precision of the estimate of the quantity of interest?” The answer depends on a number of factors, such as the quantity that is being estimated: a mean, or an extreme value, or some other quantity; the nature of the measurement error—additive versus multiplicative; the costs of laboratory analyses, and so on. In this paper, we investigate these issues when the interest is in estimating the mean concentration of a specified aerosol species over a fixed time period. In particular, we propose a method for determining a sampling duration that will yield the “best estimate” of the mean concentration for a given cost whenever appropriate statistical assumptions hold.  相似文献   
139.
ABSTRACT

Aerosol size distributions were measured during the summertime 1995 Southeastern Aerosol and Visibility Study (SEAVS) in Great Smoky Mountains National Park using an Active Scattering Aerosol Spectrometer (ASASP-X) optical particle counter. We present an overview of the experimental method, our data inversion technique, timelines of the size distribution parameters, and calculations of dry accumulation mode aerosol density and refractive index. Aerosol size distributions were recorded during daylight hours for aerosol in the size range 0.1 < Dp < 2.5 u,m. The particle refractive index used for the data inversion was calculated with the partial molar refractive index approach using 12-hr measured aerosol chemical composition. Aerosol accumulation mode volume concentrations ranging from 1 to 26 u,m3 cm-3 were observed, with an average of 7 ± 5 u,m3 cm-3. The study average dry accumulation mode geometric volume median diameter was 0.27 ± 0.03 u,m, and the mean geometric standard deviation was 1.45 ± 0.06. Using an internally mixed aerosol model, and assuming chemical homogeneity across the measured particle distribution, an average accumulation mode dry sulfate ion mass scattering efficiency of 3.8 ± 0.6 m2 g-1 was calculated.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号