全文获取类型
收费全文 | 412篇 |
免费 | 8篇 |
国内免费 | 19篇 |
专业分类
安全科学 | 31篇 |
废物处理 | 41篇 |
环保管理 | 34篇 |
综合类 | 42篇 |
基础理论 | 55篇 |
污染及防治 | 162篇 |
评价与监测 | 44篇 |
社会与环境 | 30篇 |
出版年
2023年 | 3篇 |
2022年 | 8篇 |
2021年 | 9篇 |
2020年 | 3篇 |
2019年 | 8篇 |
2018年 | 18篇 |
2017年 | 16篇 |
2016年 | 25篇 |
2015年 | 10篇 |
2014年 | 20篇 |
2013年 | 33篇 |
2012年 | 31篇 |
2011年 | 29篇 |
2010年 | 19篇 |
2009年 | 26篇 |
2008年 | 30篇 |
2007年 | 37篇 |
2006年 | 30篇 |
2005年 | 21篇 |
2004年 | 12篇 |
2003年 | 10篇 |
2002年 | 21篇 |
2001年 | 5篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1994年 | 1篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有439条查询结果,搜索用时 15 毫秒
31.
An increase in the chemical oxygen demand (COD) has been noticed in most Korean reservoirs. Therefore, this research systematically investigated the causes of organic accumulation. Samples of soil affecting the quality of water of reservoirs were collected at various sources and analyzed for their organic characteristics. The COD to biochemical oxygen demand (BOD) ratio was used as the key parameter in the evaluation of non-biodegradable (NBD) organic accumulation in the reservoirs. Soil samples containing plant roots were agitated, with the supernatant showing COD/BOD ratios of less than 2.8, while those of the composted tree leaves were greater than 5.0, suggesting that humic substances produced in forest areas are a major cause of NBD organic accumulation in reservoirs. In addition, the organic fractionation of the leachate from leaching tests showed that of the various types of hydrophobic natural organic matter (NOM), the larger molecular weight humic acid makes a greater contribution than fulvic acid to the increase in the NBD COD in Korean reservoirs. 相似文献
32.
An IRA-743 resin bulk sampler was validated to monitor long-term bulk deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Six consecutive sampling campaigns (2008-2009) were conducted at four sites around steel complexes in Pohang, South Korea to investigate spatial and seasonal variations of PCDD/F bulk deposition. The bulk deposition within the steel complex showed the highest ∑4-8PCDD/F (Tetra-Octa) fluxes, ranging from 204 to 608 (mean: 352) pg m−2 d−1, indicating steel complexes were major sources of PCDD/Fs. The homologue profiles were dominated with lower chlorinated PCDFs. Furthermore, the prevailing winds were confirmed to influence the spatial distribution of PCDD/F deposition. There were apparent seasonal variations of the bulk deposition at each site, and seasonal homologue patterns of PCDD/Fs were clearly observed. According to the passive air sampling, however, no significant seasonal change of ambient air concentrations of PCDD/Fs was observed. Therefore, it was concluded that the seasonal variations of deposition fluxes of PCDD/Fs probably resulted from temperature-dependent gas/particle partitioning. 相似文献
33.
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32-875 μg L−1 in creeks, 0.61-87.0 μg L−1 in WWTP effluents, and 29.3-230 μg g−1 TOC in sediments. Concentrations of COP were 0.09-19.0 μg L−1 in creeks, 0.11-44.0 μg L−1 in WWTP effluents, and 2.51-438 μg g−1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d−1 for NPs and 1.00 kg d−1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa. 相似文献
34.
The nitrogen changes and the nitrogen mass balance in a free water surface flow constructed wetland (CW) using the four-year monitoring data from 2008 to 2012 were estimated. The CW was composed of six cells in series that include the first settling basin (Cell 1), aeration pond (Cell 2), deep marsh (Cell 3), shallow marsh (Cell 4), deep marsh (Cell 5) and final settling basin (Cell 6). Analysis revealed that the NH4+-N concentration decreased because of ammonification which was then followed by nitrification. The NO4+-N and NO4+-N were also further reduced by means of microbial activities and plant uptake during photosynthesis. The average nitrogen concentration at the influent was 37,819 kg/year and approximately 45% of that amount exited the CW in the effluent. The denitrification amounted to 34% of the net nitrogen input, whereas the accretion of sediment was only 7%. The biomass uptake of plants was able to retain only 1% of total nitrogen load. In order to improve the nutrient removal by plant uptake, plant coverage in four cells (i.e., Cells 1, 3, 4 and 5) could be increased. 相似文献
35.
Scott W. Stine Inhong Song Christopher Y. Choi Charles P. Gerba 《Food and environmental virology》2011,3(2):86-91
The purpose of this study was to quantify the transfer of viral and bacterial pathogens in water used to dilute pesticides
sprayed onto the surfaces of cantaloupe, iceberg lettuce, and bell peppers. The average percent transfer of bacteria was estimated
to range from 0.00021 to 9.4%, while average viral transfer ranged from 0.055 to 4.2%, depending on the type of produce. Based
on these values the concentrations of hepatitis A virus (HAV) and Salmonella in water necessary to achieve a 1:10,000 annual risk of infection were calculated. Under worst case scenario assumptions,
in which a pesticide is applied on the same day that the produce is harvested and when maximum transfer values are used, concentrations
of 1.5 × 10−3 CFU Salmonella or 2.7 × 10−7 MPN HAV per 100 ml of the water used for application would result in 1:10,000 annual infection risk to anyone who consumes
the fresh produce. If harvesting does not occur until at least 14 days after the application, to produce the same risk of
infection, the numbers of Salmonella in 100 ml of water used to dilute the pesticides will be greater by up to five orders of magnitude, while the HAV numbers
will have increased by up to two orders of magnitude. Based on the reported concentrations of enteric viruses in surface and
ground waters in the United States, a 1:10,000 annual risk of infection could easily be exceeded with some groundwater sources
used in the United States. To reduce the risks associated with the consumption of fresh produce, water used to prepare pesticides
in spray applications should be evaluated for its microbiological quality. 相似文献
36.
Formic acid was used for the nitrate reduction as a reductant in the presence of Pd:Cu/γ-alumina catalysts. The surface characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by SEM, TEM-EDS. The metals were not distributed homogeneously on the surface of catalyst, although the total contents of both metals in particles agreed well with the theoretical values. Formic acid decomposition on the catalyst surface, its influence on solution pH and nitrate removal efficacy was investigated. The best removal of nitrate (50 ppm) was obtained under the condition of 0.75 g/L catalyst with Pd:Cu ratio (4:1) and two fold excess of formic acid. Formic acid decay patterns resembled those of nitrate removal, showing a linear relationship between kf (formic acid decay) and k (nitrate removal). Negligible amount of ammonia was detected, and no nitrite was detected, possibly due to buffering effect of bicarbonate that is in situ produced by the decomposition of formic acid, and due to the sustained release of H2 gas. 相似文献
37.
Fernando Rojano Pierre-Emmanuel Bournet Melynda Hassouna Paul Robin Murat Kacira Christopher Y. Choi 《Environmental monitoring and assessment》2018,190(12):724
Air inside poultry houses must be removed on a regular basis to prevent excess of heat, particles and noxious gases that can imperil animals. To cope with this issue, natural ventilation could be an effective method when assisted by accurate predictions. This study investigates air discharges caused by natural ventilation of a poultry house by means of a three-dimensional computational fluid dynamics (CFD) model. It solves the governing equations of momentum, heat and mass transport, radiative transfers and animal-generated heat. Wind directions of 0°, 36° and 56° (0° corresponds to a wind blowing perpendicular to the ridgeline) were investigated; the CFD model predictions achieved a RMSE of 1.2 °C and 0.6 g[H2O] kg?1 [dry air] for internal temperature and absolute humidity, respectively, when air blew with an angle of 36°. Air renewal rates (ARR) were 39.5 (±?1.9), 34.9 (±?2.2) and 33.6 (±?1.7) volumes of the building per hour, when air blew at 0°, 36° and 56°, respectively. Such ARR predictions served to know how the gases contained in air would likely spread downstream from the building in order to define regions of potentially high gas concentration that could endanger neighbouring habitable facilities. 相似文献
38.
Md. Monir Hossain Andrew B. Lawson Bo Cai Jungsoon Choi Jihong Liu Russell S. Kirby 《Environmental and Ecological Statistics》2013,20(1):91-107
We propose a space-time stick-breaking process for the disease cluster estimation. The dependencies for spatial and temporal effects are introduced by using space-time covariate dependent kernel stick-breaking processes. We compared this model with the space-time standard random effect model by checking each model’s ability in terms of cluster detection of various shapes and sizes. This comparison was made for simulated data where the true risks were known. For the simulated data, we have observed that space-time stick-breaking process performs better in detecting medium- and high-risk clusters. For the real data, county specific low birth weight incidences for the state of South Carolina for the years 1997–2007, we have illustrated how the proposed model can be used to find grouping of counties of higher incidence rate. 相似文献
39.
The decomposition of chloroform (CHCl3) diluted in air was studied. The experiment was carried out by using a gliding arc plasma. Different values of initial concentrations of chloroform, total gas flow rates, and input power frequencies have been used to investigate this effects on the conversion reaction products both qualitatively and quantitatively. Experimental results indicate that the maximum conversion of chloroform was 97% at a total gas flow rate of 180?L?h?1 containing 1% chloroform. Using air as carrier gas, decomposition of CHCl3 produces CCl4, CO2, CO, and Cl2 as the main products. Small amounts of HCl and COCl2 are also detected. Liquid products were also produced. 相似文献
40.
Sang-Sup Lee Seong-Man Mun Won-Joon Choi Byoung-Moo Min Sang-Won Cho Kwang-Joong Oh 《环境科学学报(英文版)》2012,24(5):897-902
Aqueous 1,8-diamino-p-menthane (KIER-C3) and commercially available amine solutions were tested for CO2 absorption. A 2-amino- 2-methyl-1-propanol (AMP) solution with an addition of KIER-C3 showed 9.3% and 31.6% higher absorption rate for CO2 than the AMP solution with an addition of monoethanolamine (MEA) and ammonia (NH3), respectively. The reaction rate constant for CO2 absorption by the AMP/KIER-C3 solution was determined by the following equation: k2,AMP/C3 = 7.702×106 exp (-2248.03/T). A CO2 loading ratio of the AMP/KIER-C3 solution was also 2 and 3.4-times higher than that of the AMP/NH3 solution and the AMP/MEA solution, respectively. Based on the experimental results, KIER-C3 may be used as an excellent additive to increase CO2 absorption capability of AMP. 相似文献