Cornus stolonifera, Salix petiolaris, and Spiraea alba
clones already located within the corridor of an electrical power line. To
establish the efficiency of treatments, we examined the statistical
differences of growth traits between species and treatments.
An analysis of the effects of layering shows, after the first growth season,
differences for all growth traits in only one species, Spiraea alba.
After the second growth season, we observed the development of new aerial
stems. Layering favors horizontal expansion of shrubs over height
development. The third year after treatment, the effect of layering is
reduced except for Cornus stolonifera, which continuously increases,
as shown by the significant progression of the clone issued from the layer
even five years after treatments. With the cutting back technique, we
expected a distinct vertical growth of the shrubs at the expense of
increasing the crown diameter. This technique would be best associated with
the rejuvenation of clones, followed by a layering of new shoots to allow a
horizontal expansion of the shrubs. Therefore, the formation of a dense shrub
community by layering should be considered a valuable approach for the
biological control of undesirable trees in powerline rights-of-way. 相似文献
Different aspects of bacterial degradation of organic contaminants in soil, and how to improve the efficiency and reproducibility is discussed in this review. Although bioremediation in principle includes the use of any type of organism in improving the condition of a contaminated site, most commonly bacteria are the degraders and other organisms, such as soil animals or plant roots, play a role in dissemination of bacteria and, indirectly, plasmids between bacteria, and in providing nutrients and co-substrates for the bacteria active in the degradation process. There are a number of different procedures that have been tested more-or-less successfully in attempts to improve reliability, cost efficiency and speed of bioremediation. The methods range from minimal intervention, such as mere monitoring of intrinsic bioremediation, through in situ introduction of nutrients and/or bacterial inocula or improvement of physico-chemical conditions, all the way to excavation followed by on site or ex situ composting in its different varieties. In the past the rule has been that more intervention (leading to higher costs) has been more reliable, but novel ideas are continuously tried out, both as a means to come up with new truly functional applications and also as a line of studies in basic soil microbial ecology. Both approaches generate valuable information needed when predicting outcome of remediation activities, evaluating environmental risks, deciding on cleaning-up approaches, etc. The emphasis of this review is to discuss some of the novel methods for which the value has not been clearly shown, but that in our view merit continued studies and efforts to make them work, separately or in combination. 相似文献
Environmental Science and Pollution Research - Waste-to-energy approaches are becoming increasingly important around the world, and municipal solid waste (MSW) as a renewable and sustainable energy... 相似文献
Environmental Science and Pollution Research - In this work, it was analyzed the behavior of three commercial activated carbons with different textural and chemical properties to adsorb... 相似文献
Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.
Central and Eastern European countries are a hotspot area when analyzing the impacts of climate change on agricultural and environmental sectors. This paper conducts a socio-economic evaluation of climate risks on crop production in Hungary, using panel data models. The region has a special location in the Carpathian basin, where the spatial distribution of precipitation varies highly from humid conditions in the western part to semiarid conditions in eastern Hungary. Under current conditions, crop systems are mainly rainfed, and water licences are massively underexploited. However, water stress projected by climate change scenarios could completely change this situation. In the near future (2021–2050), most of the crops examined could have better climatic conditions, while at the end of the century (2071–2100), lower yields are expected. Adaptation strategies must be based on an integrated evaluation which links economic and climatic aspects, and since the results show important differences in the case of individual systems, it is clear that the response has to be crop and region specific. 相似文献
Through various processes the nitrogen oxides (NOX) interact with trace gases in the troposphere and stratosphere which do absorb in the spectral range relevant to the greenhouse effect (infrared wavelengths). The net effect is an enhancement of the greenhouse effect. The catalytic role of NOX in the production of tropospheric ozone provides the most prominent contribution. The global waming potential is estimated as GWP (NOX = 30 – 33 and 7 – 10 for the respective time horizons of 20 and 100 years, and is thereby comparable to that of methane. NOX emissions in rural areas of anthropogenically influenced regions, or those in the vicinity of the txopopause caused by air traffic, cause the greenhouse effectivity to be substantially more intense. We estimate an additional 5–23 % for Germany’s contribution to the anthropogenic greenhouse effect as a result of the indirect greenhouse effects stemming from NOX. Furthermore, a small and still inaccurately defined amount of the deposited NOX which has primarily been converted into nitrates is again released from the soil into the atmosphere in the form of the long-lived greenhouse gas nitrous oxide (N2O). Thus, anthropogenically induced NOX emissions contribute to enhanced greenhouse effect and to stratospheric ozone depletion in the time scale of more than a century. 相似文献