首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   0篇
  国内免费   1篇
废物处理   5篇
环保管理   23篇
综合类   127篇
基础理论   45篇
污染及防治   65篇
评价与监测   11篇
社会与环境   2篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   9篇
  2009年   11篇
  2008年   6篇
  2007年   7篇
  2006年   8篇
  2005年   14篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1996年   9篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1985年   4篇
  1984年   4篇
  1975年   3篇
  1969年   2篇
  1967年   2篇
  1966年   2篇
  1965年   4篇
  1964年   2篇
  1963年   2篇
  1962年   4篇
  1961年   7篇
  1960年   7篇
  1959年   6篇
  1958年   4篇
  1957年   5篇
  1956年   8篇
  1955年   6篇
  1954年   5篇
  1953年   7篇
  1951年   4篇
  1950年   2篇
  1947年   3篇
  1942年   2篇
  1941年   3篇
  1939年   2篇
  1934年   2篇
  1931年   2篇
排序方式: 共有278条查询结果,搜索用时 31 毫秒
121.
122.
123.
124.
125.

Goal and Scope

Which impact does the use of non-energetic abiotic resources (ores, minerals, etc.) have in life cycles of energy systems based on biogenic and fossil fuels? Is this kind of resource use less or more environmentally harmful than the utilisation of energetic abiotic resources (mineral oil, natural gas, etc.) in the same life cycles? This paper aims at answering these questions. In Part 1, a methodology is presented and applied to the life cycles of selected energy systems. Part 2 presents and discusses the results.

Methods

The applied methodology has been explained in the Part 1. For the assessment of energetic abiotic resource use, a widely recognised method is used. For the assessment of nonenergetic abiotic resource use, no overall recognised methodological approach exists. That is why for this aspect two different methods are exemplarily applied and compared with each other.

Results and Conclusion

Results show that the two assessment approaches for non-energetic resource utilisation lead to qualitatively equal results. Nevertheless they differ considerably from each other in their absolute values. This makes obvious that there is still a need for further methodological research work on that issue. Nevertheless, both methodologies yield that the accumulated effect of ore and mineral use is considerably lower than the accumulated effect of fossil primary energy utilisation in all life cycles analysed. With the assumptions made, the use of non-energetic abiotic resources only plays a comparatively subordinate role in the environmental life cycle assessment of energy systems based on biogenic and fossil fuels.

Recommendation and Perspective

Results suggest that an important resource-related impact of biomass and fossil fuel powered energy systems is caused by their consumption of fossil primary energy resources. The impact of non-energetic resource use can be neglected in comparison to that. At the same time, results also make clear that there is still a considerable need for further methodical research aiming at a standardised assessment methodology for the use of non-energetic abiotic resources.  相似文献   
126.
127.
Abstract: Mass (solute) transport in a stream or lake sediment bed has a significant effect on chemical mass balances and microbial activities in the sediment. A “1D vertical dispersion model” is a useful tool to analyze or model solute transfer between river or lake water and a sediment bed. Under a motionless water column, solute transfer into and within the sediment bed is by molecular diffusion. However, surface waves or bed forms create periodic pressure waves along the sediment/water interface, which in turn induce flows in the pores of the sediment bed. The enhancement of solute transport by these interstitial periodic flows in the pores has been incorporated in a 1D depth‐dependent “enhanced dispersion coefficient (DE).” Typically, DE diminishes exponentially with depth in the sediment bed. Relationships have been developed to estimate DE as a function of the characteristics of sediment (particle size, hydraulic conductivity, and porosity) and pressure waves (wave length and height). In this paper, we outline and illustrate the calculation of DE as well as the penetration depth (dp) of the flow effect. Sample applications to illustrate the computational procedure are provided for dissolved oxygen transfer into a stream gravel bed and release of phosphorus from a lake bed. The sensitivity of the results to input parameter values is illustrated, and compared with the errors obtained when interstitial flow is ignored. Maximum values of DE near the sediment surface can be on the order of 1 cm2/s in a stream gravel bed with standing waves, and 0.001 cm2/s in a fine sand lake bed under progressive surface waves, much larger than molecular diffusion coefficients.  相似文献   
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号