首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   1篇
  国内免费   6篇
安全科学   3篇
废物处理   19篇
环保管理   2篇
综合类   17篇
基础理论   16篇
污染及防治   38篇
评价与监测   5篇
社会与环境   6篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   10篇
  2011年   11篇
  2010年   2篇
  2009年   6篇
  2008年   7篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2004年   3篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1991年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
101.
Although mysids play important roles in marine food chains, studies on their production are scarce, especially for warm-water species. We investigated life history and production of Orientomysis robusta in a shallow warm-temperate habitat of the Sea of Japan. Its spawning and recruitment occurred throughout the year; 19 overlapping cohorts were recognizable over an annual cycle. The summer cohorts recruited in July–September exhibited rapid growth, early maturity, small brood size, and small body size. A converse set of life history traits characterized the autumn–winter cohorts recruited in October–March. The spring cohorts recruited in April–June had intermediate characteristics of both cohorts. Life spans were 19–33, 21–48, and 69–138 days for summer, spring, and autumn–winter cohorts, respectively, and mortality rates were high for spring and summer cohorts, especially during June–August but were low for autumn–winter cohorts. Production calculated from the summation of growth increments was 488.8 mg DW m−2 year−1 with an annual P/B ratio of 21.26. The short life span seems to be responsible for such an extremely high P/B ratio. A method not requiring recognition and tracking cohorts gave similar values (534.0 mg DW m−2 year−1 and 20.49). The close agreement in production values between the two methods indicates our estimates are valid.  相似文献   
102.
Immunoassay methods are generally used for measuring of allergenic substances. However, they need special facilities, skilled handling, and time-consuming procedure. In this work, a fiber-optic immunoassay system which could measure allergen by fluorescent intensities of immune complexes formed by allergens and fluorescently labeled antibodies was established. Immune complexes absorbed on the optical fiber probe surface, and excitation light was injected into the probe, then evanescent field is created in the proximity of the probe. The fluorophores were excited by the evanescent light, and fluorescence was detected by a photo diode. The target allergen detected by our system was Der f1 derived from Dermatophagoides farinae that is one of the house dust mite and major source of inhaled allergens. The fluorophore used labeling on detecting antibody was cyanine 5. The system enabled to detect and quantitatively determine of Der f1. The measurement range was from 0.24 to 250?ng/ml, and the result competes with ELISA. The measurement time was 16?min/sample. The immunoassay system was applied to measurement of Der f1 from actual dust samples. Calculated values of Der f1 showed good correlations between the fiber-optic fluoroimmunoassay and ELISA.  相似文献   
103.
Journal of Material Cycles and Waste Management - Improving the solid-state digestion of food waste (FW) is important for recovering energy and utilizing the digested residue as fertilizer. Herein,...  相似文献   
104.
Soil management practices for sustainable agro-ecosystems   总被引:1,自引:0,他引:1  
A doubling of the global food demand projected for the next 50 years poses a huge challenge for the sustainability of both food production and global and local environments. Today’s agricultural technologies may be increasing productivity to meet world food demand, but they may also be threatening agricultural ecosystems. For the global environment, agricultural systems provide both sources and sinks of greenhouse gases (GHGs), which include carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). This paper addresses the importance of soil organic carbon (SOC) for agro-ecosystems and GHG uptake and emission in agriculture, especially SOC changes associated with soil management. Soil management strategies have great potential to contribute to carbon sequestration, since the carbon sink capacity of the world’s agricultural and degraded soil is 50–66% of the historic carbon loss of 42–72 Pg (1 Pg=1015 g), although the actual carbon storage in cultivated soil may be smaller if climate changes lead to increasing mineralization. The importance of SOC in agricultural soil is, however, not controversial, as SOC helps to sustain soil fertility and conserve soil and water quality, and organic carbon compounds play a variety of roles in the nutrient, water, and biological cycles. No-tillage practices, cover crop management, and manure application are recommended to enhance SOC storage and to contribute to sustainable food production, which also improves soil quality. SOC sequestration could be increased at the expense of increasing the amount of non-CO2 GHG emissions; however, soil testing, synchronized fertilization techniques, and optimum water control for flooding paddy fields, among other things, can reduce these emissions. Since increasing SOC may also be able to mitigate some local environmental problems, it will be necessary to have integrated soil management practices that are compatible with increasing SOM management and controlling soil residual nutrients. Cover crops would be a critical tool for sustainable soil management because they can scavenge soil residual nitrogen and their ecological functions can be utilized to establish an optimal nitrogen cycle. In addition to developing soil management strategies for sustainable agro-ecosystems, some political and social approaches will be needed, based on a common understanding that soil and agro-ecosystems are essential for a sustainable society.  相似文献   
105.

The first draft scenario toward net zero greenhouse gas (GHG) emissions by 2050 for the material cycles and waste management sector was presented by the Ministry of the Environment, Japan in August 2021. The details of the future GHG emission estimation used to create the draft scenario are described in this document. For multiple scenarios where more aggressive measures, such as carbon capture, utilization, and storage (CCUS), were included in addition to business-as-usual and the current policy continuity scenario, future GHG emissions were estimated as the sum of the products of activities and emission factors indicating changes in measures between scenarios. The estimation outcomes demonstrated that future GHG emissions from the solid waste management sector could be anticipated to be zero or even negative when material conversion to biomass, primarily for plastics, recycling to raw materials, and installation of CCUS at incineration facilities are assumed. Extensions of prior plans are not enough to reach the goal of net zero emissions, according to the measures necessary and the volume and pace of their implementation suggested in this study. Stakeholders should collaborate with great ambition.

  相似文献   
106.
Environmental Science and Pollution Research - In this study, nanoporous anodic film was produced by anodization of niobium, Nb in a fluoride ethylene glycol electrolyte. The effect of anodization...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号