首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   6篇
  国内免费   25篇
安全科学   26篇
废物处理   87篇
环保管理   57篇
综合类   81篇
基础理论   91篇
环境理论   1篇
污染及防治   226篇
评价与监测   58篇
社会与环境   19篇
灾害及防治   4篇
  2023年   10篇
  2022年   8篇
  2021年   10篇
  2020年   7篇
  2019年   11篇
  2018年   20篇
  2017年   31篇
  2016年   28篇
  2015年   18篇
  2014年   25篇
  2013年   58篇
  2012年   33篇
  2011年   48篇
  2010年   34篇
  2009年   45篇
  2008年   43篇
  2007年   41篇
  2006年   42篇
  2005年   30篇
  2004年   31篇
  2003年   14篇
  2002年   15篇
  2001年   13篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有650条查询结果,搜索用时 78 毫秒
511.
512.
To reliably predict field operation performance derived from lab-based tests, it is very important to observe and consider all the specific landfill-site properties. The purpose of this study was to suggest and discuss the availability of batch and lysimeter tests to estimate the oxygen amount and the aeration period. To achieve this purpose, a comparison between lab test (batch and lysimeter tests) and full-scale applications was conducted. This study showed that aerobic batch and lysimeter tests could be used to estimate the amount of oxygen (mg-O2/g-DM) required to bio-stabilize landfilled wastes within a short period of time. In addition, aeration periods necessary to reach the target value can be calculated by a first-order kinetic depending on moisture content. Therefore, this study suggests that when applying in situ aeration processes to field-scale landfills, the amount of aeration required to bio-stabilize landfilled wastes has to be determined by the aerobic batch test, and then the aeration period required to reach the target value can be calculated by a reliable monitoring of the oxygen concentration in a landfill site in combination with the first-order kinetic.  相似文献   
513.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   
514.
Environmental Science and Pollution Research - This study investigates uncertainty in machine learning that can occur when there is significant variance in the prediction importance level of the...  相似文献   
515.
Over the western North Pacific, a large amount of land aerosols from Asian-Pacific countries is transported by the prevailing westerlies. This transport makes the radiative characteristics of these aerosols diverse, particularly when one compares those characteristics over the coastal sea with those over the open sea. In this paper we discuss a method that uses satellite data to obtain the single-scattering albedo (ω) and asymmetry factor (g) of atmospheric aerosols for two large-scale subdivisions—the coastal sea (within 250 km from the coast) and the open sea (the remaining area)—over the western North Pacific (110°E–180°, 20°N–50°N). Our estimation method uses satellite measurements, obtained over a six-year period (2000–2005), of aerosol optical depth (AOD) and shortwave fluxes at both the surface and the top of the atmosphere (TOA); the measurements are obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES). For the two subdivisions, the estimated annual means of (ω,g) at 630 nm are significantly different: (0.94, 0.65) over the coastal sea and (0.97, 0.70) over the open sea. From a quantitative viewpoint, this result indicates that in comparison with aerosols over the open sea, those over the coastal sea show greater absorption and lesser forward scattering of solar radiation. The estimated optical properties are responsible for the aerosol surface cooling observed by MODIS and CERES, which is approximately 138 and 108 W m−2 per AOD over the coastal sea and open sea, respectively.  相似文献   
516.
Recent research has suggested that the adverse health effects caused by nanoparticles are associated with their surface area (SA) concentrations. In this study, SA was estimated in two ways using number and mass concentrations and compared with SA (SAmeas) measured using a diffusion charger (DC). Aerosol measurements were made twice: once starting in October 2002 and again starting in December 2002 in Mysore, India in residences that used kerosene or liquefied petroleum gas (LPG) for cooking. Mass, number, and SA concentrations and size distributions by number were measured in each residence. The first estimation method (SAPSD) used the size distribution by number to estimate SA. The second method (SAINV) used a simple inversion scheme that incorporated number and mass concentrations while assuming a lognormal size distribution with a known geometrical standard deviation. SAPSD was, on average, 2.4 times greater (range = 1.6–3.4) than SAmeas while SAINV was, on average, 6.0 times greater (range = 4.6–7.7) than SAmeas. The logarithms of SAPSD and SAINV were found to be statistically significant predictors of the logarithm of SAmeas. The study showed that particle number and mass concentration measurements can be used to estimate SA with a correction factor that ranges between 2 and 6.  相似文献   
517.
The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.  相似文献   
518.
Perfluorinated compounds (PFCs) measured in surface running waters indicated the existence of different emission sources in eight main city basins. The tap water reflected the contamination pattern and levels in their corresponding source water basins. The daily intakes through tap water consumption ranged from <0.01 to 0.73 ng kg−1 d−1 for perfluorooctanoate (PFOA) and <0.01 to 0.08 ng kg−1 d−1 for perfluorooctanesulfonate (PFOS). Tap water intake-derived exposure accounted for 8.6%-101% (for PFOA) and while <10% (for PFOS) of total daily exposure, which was estimated from Korean serum concentrations using a pharmacokinetic model. Our findings indicate that tap water intake could be an important contributor to PFOA exposure in Korean populations; accordingly, additional efforts are necessary to improve the removal efficiency of perfluorinated compounds (PFCs) in the water purification process. However, more fundamentally the aim would be to reduce the discharge of PFCs from potential sources within the basin.  相似文献   
519.
Hwang SH  Park DU  Joo SI  Park HH  Yoon CS 《Chemosphere》2011,85(1):135-139
In this study, we assessed airborne endotoxin levels in university laboratories, hospital diagnostic laboratories, and a biowaste site. We also investigated indoor and outdoor sampling, sampling site, type of ventilation system, presence of open biowaste boxes, weather, and detection of Gram-negative bacteria (GNB). A total of 69 air samples were collected from 11 facilities in three institutions. Average total airborne endotoxin levels ranged from <0.01 to 10.02 EU m−3, with an overall mean of 1.03 EU m−3. Endotoxin levels were high in window-ventilated facilities, in facilities in which GNB were detected; levels were also high when it was rainy (all ps < 0.05). Endotoxin levels were significantly correlated with humidity (r = 0.70, p < 0.01). The presence of HVAC; humidity; and the presence of open biowaste boxes affect endotoxin levels in laboratories.  相似文献   
520.
Neculita CM  Yim GJ  Lee G  Ji SW  Jung JW  Park HS  Song H 《Chemosphere》2011,83(1):76-82
Bioreactors are one possible best sustainable technology to address the mine-impacted water problems. Several prospective substrates (mushroom compost, cow manure, sawdust, wood chips, and cut rice straw) were characterized for their ability to serve as a source of food and energy for sulfate-reducing bacteria. Twenty bench-scale batch bioreactors were then designed and set up to investigate relative effectiveness of various mixtures of substrates to that of mushroom compost, the most commonly used substrate in field bioreactors, for treating mine drainage with acidic (pH 3) and moderate pH (pH 6). Overall, reactive mixtures showed satisfactory performances in generating alkalinity, reducing sulfate and removing metals (Al>Fe>Mn) (up to 100%) at both pH conditions, for all substrates. The mixture of sawdust and cow manure was found as the most effective whereas the mixture containing 40% cut rice straw gave limited efficiency, suggesting organic carbon released from this substrate is not readily available for biodegradation under anaerobic conditions. The mushroom compost-based bioreactors released significant amount of sulfate, which may raise a more concern upon the start-up of field-scale bioreactors. The correlation between the extent of sulfate reduction and dissolved organic carbon/SO(4)(2-) ratio was weak and this indicates that the type of dissolved organic carbon plays a more important role in sulfate reduction than the absolute concentration and that the ratio is not sensitive enough to properly describe the relative effectiveness of substrate mixtures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号