首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   2篇
  国内免费   5篇
安全科学   4篇
废物处理   23篇
环保管理   17篇
综合类   8篇
基础理论   26篇
污染及防治   61篇
评价与监测   10篇
社会与环境   2篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   6篇
  2011年   15篇
  2010年   13篇
  2009年   8篇
  2008年   12篇
  2007年   15篇
  2006年   8篇
  2005年   2篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1989年   2篇
  1984年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
101.
Microbial risk was quantified to assess human health risk as a result of exposure to E. coli in reclaimed wastewater irrigation. Monitoring data on E. coli were collected from pond water in paddy rice plots during the growing season. Five treatments were used and each was triplicated to evaluate the changes in E. coli concentrations in experiments performed in 2003 and 2004. The Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion among farmers and neighboring children. A Monte Carlo simulation (10,000 trials) was conducted to estimate the risk associated with uncertainty. In this study, risk values ranged from 10−4 to 10−8. UV-disinfected irrigation water showed a lower risk value than others, and its level was within the range of the actual paddy rice field with surface water. Agricultural activity was thought to be safer after 1–2 days, when the paddy field was irrigated with reclaimed wastewater. Also, children were found to have a greater risk of infection with E. coli. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of wastewater reuse in paddy rice culture.  相似文献   
102.
Choi Y  Cho M  Lee Y  Choi J  Yoon J 《Chemosphere》2007,69(5):675-681
This study reports on quantitative methodology for rational selection of the ozone injection point within unit processes of conventional drinking water treatment plants to improve disinfection efficiencies. The method is based on the fact that a specific inactivation level of microorganisms is achieved at a unique value of ozone exposures, independent of ozone dose and type of water, and quantitatively described by a Delayed Chick-Watson model (C T(lag): 1.03mgl(-1), k: 1.44mg(-1)lmin(-1)). This study demonstrated this phenomenon by performing the inactivation of Bacillus subtilis (B. subtilis) spores with ozone in various types of water collected from a series of unit processes in a water treatment plant. Simple measurements of the ozone decomposition behavior in waters from each unit process of a water treatment plant can allow the quantitative evaluation of the ozone needed to achieve a required level of inactivation. This methodology will be useful for drinking water treatment plants which intend to improve the disinfection efficiencies of their ozonation process.  相似文献   
103.
Process control parameters influencing microbial perchlorate reduction via a flow-through zero-valent iron (ZVI) column reactor were investigated in order to optimize perchlorate removal from water. Mixed perchlorate reducers were obtained from a wastewater treatment plant and inoculated into the reactor without further acclimation. Examined parameters included hydraulic residence time (HRT), pH, nutrients requirement, and perchlorate reduction kinetics. The minimum HRT for the system was concluded to be 8 hr. The removal efficiency of 10 mg. L-1 influent perchlorate concentration was reduced by 20%-80% without control to the neutral pH (HRT = 8 hr). Therefore pH was determined to be an important parameter for microbial perchlorate reduction. Furthermore, a viable alternative to pH buffer was discussed. The microbial perchlorate reduction followed the first order kinetics, with a rate constant (K) of 0.761 hr-1. The results from this study will contribute to the implementation of a safe, cost effective, and efficient system for perchlorate reduction to below regulated levels.  相似文献   
104.
Lithium manganese oxide–based adsorbents have been developed for the recovery of lithium from seawater. To maximize the recovery efficiency, it is important to prevent microfouling of lithium adsorbents by marine bacteria. To identify the marine bacteria that cause biofouling against the lithium adsorbents, lithium adsorbents were installed into a non-coated frame or a frame coated with an antifouling agent soaked in seawater. Microorganisms from the surface of lithium adsorbents were collected for 30 days at 10-day intervals, cultured in marine broth, isolated, and identified by 16S rDNA sequencing. Pseudoalteromonas and Vibrio were constituted to 35.6 and 28.8 % of total isolates, respectively, and were predominant in the non-coated frame, whereas Vibrio was poorly isolated (2.3 %) from the antifouling agent–coated frame. In this study, antifouling strategy for maximum lithium recovery efficiency in the marine area takes account of Pseudoalteromonas and Vibrio.  相似文献   
105.
Arsenic is subject to microbial interactions, which support a wide range of biogeochemical transformations of elements in natural environments such as wetlands. The arsenic detoxification potential of the bacterial strains was investigated with the arsenite oxidation gene, aox genotype, which were isolated from the natural and constructed wetlands. The isolates were able to grow in the presence of 10 mM of sodium arsenite (As(III) as NaAsO2) and 1 mM of d+glucose. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that these isolated strains resembled members of the genus that have arsenic-resistant systems (Acinetobacter sp., Aeromonas sp., Agrobacterium sp., Comamonas sp., Enterobacter sp., Pantoea sp., and Pseudomonas sp.) with sequence similarities of 81–98%. One bacterial isolate identified as Pseudomonas stutzeri strain GIST-BDan2 (EF429003) showed the activity of arsenite oxidation and existence of aoxB and aoxR gene, which could play an important role in arsenite oxidation to arsenate. This reaction may be considered as arsenic detoxification process. The results of a batch test showed that P. stutzeri GIST-BDan2 (EF429003) completely oxidized in 1 mM of As(III) to As(V) within 25–30 h. In this study, microbial activity was evaluated to provide a better understanding of arsenic biogeochemical cycle in both natural and constructed wetlands, where ecological niches for microorganisms could be different, with a specific focus on arsenic oxidation/reduction and detoxification.  相似文献   
106.
W. Yoon  S. Kim  K. Han 《Marine Biology》2001,139(5):923-928
Morphological characteristics and sinking velocities of naturally occurring fecal pellets of copepods, euphausiids, salps, and pelagic mollusks collected in the northeastern tropical Atlantic were investigated during the period of May-June 1992. The fecal pellets of copepods and euphausiids were cylindrical and distinguished only by their size. Those of salps were, in general, rectangular, and slight differences were noted according to the species. The fecal pellets of the molluscan pteropod Clio sp. were conical, while those of the molluscan heteropod Carinaria sp. were spiral. The sinking velocities ranged from 26.5 to 159.5 m day-1 for copepod fecal pellets, from 16.1 to 341.1 m day-1 for euphausiid pellets, from 43.5 to 1167.6 m day-1 for salps' pellets (Cyclosalpa affinis, Salpa fusiformis, Iasis zonaria, and two unidentified species), from 65 to 205.7 m day-1 for Clio sp. pellets, and from 120.3 to 646.4 m day-1 for Carinaria sp. fecal pellets. The measured sinking velocities were compared with estimates predicted using the equations of Komar et al. (1981; Limnol Oceanogr 26:172-180), Stokes' law, and Newton's second law, using either a constant density of fecal pellets (1.22 g cm-3) or densities estimated with the three different equations. When a constant density was used, the three equations overestimated the sinking velocities; Stokes' law resulted in the largest overestimation, and Newton's second law, the smallest. At the taxa level, the overestimation was greatest for euphausiid 1 fecal pellets and smallest for copepod fecal pellets. When the three equations were used to estimate fecal pellet density, the density estimated using the equation of Komar et al. was the greatest, and that using Stokes' law, the smallest, resulting in over- and underestimation of sinking velocities, respectively. Newton's second law resulted in an intermediate density and gave the closest estimate of sinking velocities. We propose that measurement of sinking velocities of a portion of the fecal pellets might guide in choosing an appropriate equation to be used for a reasonable interpretation of vertical mass flux.  相似文献   
107.
Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH4) emission resulting from rice cultivation. In laboratory incubations, CH4 production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt−1), while observed CO2 production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH4 emission rates from the rice planted potted soils significantly decreased with the increasing levels (2–20 Mg ha−1) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha−1 application level of the amendments, total seasonal CH4 emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH4 production rates as well as total seasonal CH4 flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens’ activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity.  相似文献   
108.
Nonaqueous phase liquid (NAPL) dissolution was studied in three-dimensional (3D) heterogeneous experimental aquifers (25.5 cm x 9 cm x 8.5 cm) with two different longitudinal correlation lengths (2.1 cm and 1.1 cm) and initial spill volumes (22.5 ml and 10.5 ml). Spatial and temporal distributions of NAPL during dissolution were measured using magnetic resonance imaging (MRI). At high NAPL spill volume, average effluent concentrations initially increased during dissolution, as NAPL pools transitioned to NAPL ganglia, and then decreased as the total NAPL-water interfacial area decreased over time. Experimental results were used to test six dissolution models: (i and ii) a one-dimensional (1D) model using either specific NAPL-water interfacial area values estimated from MR images at each time step (i.e., 1D quasi-steady state model), or an empirical mass transfer (Sh') correlation (i.e., 1D transient model), (iii and iv) a multiple analytical source superposition technique (MASST) using either the NAPL distribution determined from MR images at each time step (i.e., MASST steady state model), or the NAPL distribution determined from mass balance calculations (i.e., MASST transient model), (v) an equilibrium streamtube model, and (vi) a 3D grid-scale pool dissolution model (PDM) with a dispersive mass flux term. The 1D quasi-steady state model and 3D PDM captured effluent concentration values most closely, including some concentration fluctuations due to changes in the extent of flow reduction. The 1D transient, MASST steady state and transient, and streamtube models all showed a monotonic decrease in effluent concentration values over time, and the streamtube model was the most computationally efficient. Changes during dissolution of the effective NAPL-water interfacial area estimated from imaging data are similar to changes in effluent concentration values. The 1D steady state model incorporates estimates of the effective NAPL-water interfacial area directly at each time point; the 3D PDM does so indirectly through mass balance and a relative permeability function, which causes reduced water flow through high saturation NAPL regions. Hence, when model accuracy is required, the results indicate that a surrogate of this effective interfacial area is required. Approaches to include this surrogate in the MASST and streamtube models are recommended.  相似文献   
109.
Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L−1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m−1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and rejection follows the order LFC-1 (>90%) > MX07 (25–95%)  ESNA (30–90%) > GM (3–47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and rejection follows the order CaCl2 < KCl  K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding (71–74%) than the ESNA NF membrane (11–56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (, , and ) the rejection (38–56%) is fairly proportional to the ri,s/rp ratio (0.32–0.62) for the ESNA membrane.  相似文献   
110.
Journal of Material Cycles and Waste Management - An environment-friendly treatment of organic waste like swine manure and food waste is considered to be big challenge, because the residue of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号