首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22988篇
  免费   284篇
  国内免费   148篇
安全科学   645篇
废物处理   982篇
环保管理   3414篇
综合类   3602篇
基础理论   6361篇
环境理论   12篇
污染及防治   5881篇
评价与监测   1423篇
社会与环境   949篇
灾害及防治   151篇
  2021年   164篇
  2019年   162篇
  2018年   284篇
  2017年   297篇
  2016年   482篇
  2015年   356篇
  2014年   521篇
  2013年   1864篇
  2012年   661篇
  2011年   943篇
  2010年   778篇
  2009年   775篇
  2008年   943篇
  2007年   992篇
  2006年   870篇
  2005年   733篇
  2004年   738篇
  2003年   709篇
  2002年   677篇
  2001年   801篇
  2000年   607篇
  1999年   364篇
  1998年   296篇
  1997年   309篇
  1996年   313篇
  1995年   373篇
  1994年   336篇
  1993年   317篇
  1992年   296篇
  1991年   304篇
  1990年   323篇
  1989年   295篇
  1988年   274篇
  1987年   258篇
  1986年   253篇
  1985年   219篇
  1984年   286篇
  1983年   233篇
  1982年   298篇
  1981年   242篇
  1980年   200篇
  1979年   216篇
  1978年   194篇
  1977年   162篇
  1976年   145篇
  1975年   149篇
  1974年   164篇
  1973年   168篇
  1972年   156篇
  1971年   152篇
排序方式: 共有10000条查询结果,搜索用时 764 毫秒
741.
Real-time measurement of outdoor tobacco smoke particles   总被引:1,自引:0,他引:1  
The current lack of empirical data on outdoor tobacco smoke (OTS) levels impedes OTS exposure and risk assessments. We sought to measure peak and time-averaged OTS concentrations in common outdoor settings near smokers and to explore the determinants of time-varying OTS levels, including the effects of source proximity and wind. Using five types of real-time airborne particle monitoring devices, we obtained more than 8000 min worth of continuous monitoring data, during which there were measurable OTS levels. Measurement intervals ranged from 2 sec to 1 min for the different instruments. We monitored OTS levels during 15 on-site visits to 10 outdoor public places where active cigar and cigarette smokers were present, including parks, sidewalk cafés, and restaurant and pub patios. For three of the visits and during 4 additional days of monitoring outdoors and indoors at a private residence, we controlled smoking activity at precise distances from monitored positions. The overall average OTS respirable particle concentration for the surveys of public places during smoking was approximately 30 microg m(-3). OTS exhibited sharp spikes in particle mass concentration during smoking that sometimes exceeded 1000 microg m(-3) at distances within 0.5 m of the source. Some average concentrations over the duration of a cigarette and within 0.5 m exceeded 200 microg m(-3), with some average downwind levels exceeding 500 microg m(-3). OTS levels in a constant upwind direction from an active cigarette source were nearly zero. OTS levels also approached zero at distances greater than approximately 2 m from a single cigarette. During periods of active smoking, peak and average OTS levels near smokers rivaled indoor tobacco smoke concentrations. However, OTS levels dropped almost instantly after smoking activity ceased. Based on our results, it is possible for OTS to present a nuisance or hazard under certain conditions of wind and smoker proximity.  相似文献   
742.
Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.  相似文献   
743.
International trade in meat: the tip of the pork chop   总被引:4,自引:0,他引:4  
This paper provides an original account of global land, water, and nitrogen use in support of industrialized livestock production and trade, with emphasis on two of the fastest-growing sectors, pork and poultry. Our analysis focuses on trade in feed and animal products, using a new model that calculates the amount of "virtual" nitrogen, water, and land used in production but not embedded in the product. We show how key meat-importing countries, such as Japan, benefit from "virtual" trade in land, water, and nitrogen, and how key meat-exporting countries, such as Brazil, provide these resources without accounting for their true environmental cost. Results show that Japan's pig and chicken meat imports embody the virtual equivalent of 50% of Japan's total arable land, and half of Japan's virtual nitrogen total is lost in the US. Trade links with China are responsible for 15% of the virtual nitrogen left behind in Brazil due to feed and meat exports, and 20% of Brazil's area is used to grow soybean exports. The complexity of trade in meat, feed, water, and nitrogen is illustrated by the dual roles of the US and The Netherlands as both importers and exporters of meat. Mitigation of environmental damage from industrialized livestock production and trade depends on a combination of direct-pricing strategies, regulatory approaches, and use of best management practices. Our analysis indicates that increased water- and nitrogen-use efficiency and land conservation resulting from these measures could significantly reduce resource costs.  相似文献   
744.
In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.  相似文献   
745.
Moore MT  Lizotte RE  Knight SS  Smith S  Cooper CM 《Chemosphere》2007,67(11):2184-2191
Three oxbow lakes in northwestern Mississippi, USA, an area of intensive agriculture, were assessed for biological impairment from historic and current-use pesticide contamination using the amphipod, Hyalella azteca. Surface water and sediment samples from three sites in each lake were collected from Deep Hollow, Beasley, and Thighman Lakes from September 2000 to February 2001. Samples were analyzed for 17 historic and current-use pesticides and selected metabolites. Ten-day H. azteca survival and growth (as length and dry weight) were measured to determine the degree of biological impairment. Maximum number of detectable pesticides in surface water from Deep Hollow, Beasley and Thighman Lakes was 10, 11, and 17, respectively. Maximum number of detectable pesticides in lake sediments was 17, 17, and 15, respectively. Bioassay results indicated no observable survival effects on H. azteca exposed to surface water or sediment from any lake examined and no growth impairment in animals exposed to lake sediments. However, growth was significantly impaired in surface water exposures from Deep Hollow Lake (2 sites) and Beasley Lake (1 site). Statistically significant relationships between growth impairment (length) and cyanazine, methyl parathion, λ-cyhalothrin, chlorfenapyr, and pp′DDE surface water concentrations in Deep Hollow Lake as well as trifluralin, atrazine, and methyl parathion in Beasley Lake were observed. Although pesticide frequency and concentrations were typically greater in sediment than surface water, bioassay results indicated decreased availability of these pesticides in sediment due to the presence of clay and organic carbon. Growth impairment observed in surface water exposures was likely due to complex interaction of pesticide mixtures that were present.  相似文献   
746.
Jundiá (Rhamdia quelen, Quoy and Gaimard), a South American teleostean fish, was exposed to sub-lethal concentrations of cypermethrin (30% and 45% of the 48-h LC(50) value of 0.265 ppm) for 2, 4 or 8 days. Serum biochemical and hematological values and behavioral changes were studied. The 30% LC(50), 0.08 ppm, produced significant increases in Mg(2+), P, K(+), creatinine, urea, glucose, cholesterol, aspartate aminotransferase and alkaline phosphatase levels, and reduction in total proteins and triglycerides in serum. The 45% LC(50), 0.12 ppm, produced significant increase in Na(+), Mg(2+), P, K(+), creatinine, urea, glucose, cholesterol, and alkaline phosphatase, and reduction in triglycerides and alanine aminotransferase levels in serum. At this concentration, the fish showed behavior changes such as hyper-excitability, asphyxia, and widening of mouth and operculum. The hematological values remained normal, except for hemoglobin concentrations and the mean corpuscular hemoglobin concentration, which increased with exposure to 0.08 ppm and 0.12 ppm cypermethrin. Results of the present work show that biochemical analysis of serum can be useful to detect incipient cypermethrin intoxication of the shoal.  相似文献   
747.
The present study deals with the biodegradation of catechol through co-metabolism with glucose in aqueous solution as primary substrate in an upflow anaerobic sludge blanket (UASB) reactor. Batch studies indicated that the 1000mgl(-1) glucose concentration was sufficient to cometabolize and degrade catechol in an aqueous solution up to a concentration of 1000mgl(-1). The reactor operated at 35+/-2 degrees C, and at a constant hydraulic retention time of 8h with a gradual stepwise increase in catechol concentration from 100 to 1000mgl(-1) along with glucose as a cosubstrate. The results showed that the catechol was successfully mineralized in an UASB reactor in which microbial granulation was achieved with only glucose as the substrate. The reactor showed > or = 95% COD removal efficiency with 500-1000mgl(-1)catechol concentration in the feed and a glucose concentration of 1500mgl(-1) as a cosubstrate. Similar efficiency was obtained at a constant catechol concentration of 1000mgl(-1) with 500-1000mgl(-1) glucose concentration. Once the reactor got acclimatized with catechol, higher concentrations of catechol can be mineralized with a minimum amount of glucose as the cosubstrate without affecting the performance of the UASB reactor.  相似文献   
748.
We collected and analyzed 955 individual fish (six species) for sexual differences in PCB bioaccumulations from a southeastern, USA reservoir. Using 2-way ANCOVAs, we found significant differences in fillet PCB concentrations between sexes for channel catfish (Ictalurus punctatus), largemouth bass (Micropterus salmoides) and spotted bass (Micropterus punctulatus). Striped bass (Morone saxatilus), black crappie (Pomoxis nigromaculatus) and freshwater drum (Aplodinotus grunniens) did not display differences between sexes in PCB concentrations. We suspect that sexual differences may be due to biological differences in reproduction, relative motility and lipid deposition. For one species (striped bass), sexual differences in PCB concentrations were inconsistent with a study in the Hudson River suggesting that sexual differences in bioaccumulations can change across ecosystems. Two species which did show sexual differences, largemouth bass and channel catfish, are often chosen as representative species (e.g., "piscivore" and "benthivore") in contaminant monitoring in many USA states indicating human consumption and risk management decisions would be improved if an equal number of male and female fish were included in composite PCBs analysis. This could reduce variability in fish PCBs data from which consumption advisories are based.  相似文献   
749.
The objective of this research was to assess the degradation of fipronil [5-amino-1-(2,6-dichloro-alpha,alpha,alpha -trifluoro-p-tolyl)-4-trifluoromethylsulfinylpyrazole-3-carbonitrile] in soils from sugar cane fields in Northeastern Brazil. Degradation experiments were carried out under laboratory conditions (controlled temperature and in the dark), where sterile and non-sterile soils (Ustoxs) were incubated [under moisture content of 55% of the water holding capacity (WHC)] and analyzed for fipronil disappearance and metabolite formation. Microbial communities present in the soil degrade fipronil. However, biodegradation seems to be dependent on the bioavailability of the fipronil and the half-life according to the zero-order model. Fipronil degradation rate appeared to be biphasic. Degradation fipronil ranged from 83 days (initial concentration = 978 ng g(-1); short-term experiment) to 200 days (initial concentration = 689 ng g(-1); long-term experiment). This an initial slower rate followed by a faster rate after 90 days of incubation may lead to shorter half-life than that calculated with the zero-order model. The sulfone derivative (an oxidation product) was the predominant metabolite, but the sulfide (a reduction product) and amide (a hydrolysis product) derivatives were also formed under non-sterile conditions after 120 days of incubation. The metabolites underwent further biodegradation, particularly the sulfone derivative. Bioavailability appears to affect fipronil degradation in soils with an effective capacity to adsorb fipronil (such as Ustoxs), while redox potential was important for the formation of metabolites. Despite the fine texture, more aerobic sites were present, thus favoring the formation of the sulfone metabolite over that of the sulfide metabolite. Therefore, microaggregation of Ustoxs, with high clay content, played a very important role in determining the types of metabolites formed.  相似文献   
750.
Wastewater samples from an anaerobic reactor were extracted with hexane and derivatized with diazomethane (method 1) and with acetic anidride (method 2). Gas chromatography with electron-capture detection (ECD) was employed for separating the parent compound and intermediates trichlorophenols (TCP) and dichlorophenols (DCP) which originated from the penta chlorophenol (PCP) degradation process. The relations between concentrations of PCP, TCP and DCP areas were linear in the range of concentrations of 0.2 to 8 mg/L and 0.025 mg/L to 5 mg/L for methods 1 and 2, respectively. The repeatability of the extraction methods was satisfactory, with variation coefficients lower than 11%. For method 1, at the fortification level of 0.2 mg/L, recovery of PCP, TCP, and DCP was 112%, 74% and 45%, respectively. For method 2, the corresponding recovery values at the fortification level of 0.1 mg/L were 91%, 93% and 103%, respectively. Storage of the frozen samples did not alter their PCP determination properties. The chromatographic methods adapted for chlorophenol determination in wastewater were suitable with relatively simple manipulation techniques. The obtained results were reproducible and allowed identification of intermediates formed during the PCP degradation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号