首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12507篇
  免费   171篇
  国内免费   123篇
安全科学   427篇
废物处理   550篇
环保管理   1990篇
综合类   1437篇
基础理论   3276篇
环境理论   4篇
污染及防治   3416篇
评价与监测   867篇
社会与环境   766篇
灾害及防治   68篇
  2022年   118篇
  2021年   104篇
  2020年   91篇
  2019年   105篇
  2018年   198篇
  2017年   193篇
  2016年   316篇
  2015年   220篇
  2014年   300篇
  2013年   1030篇
  2012年   390篇
  2011年   580篇
  2010年   478篇
  2009年   518篇
  2008年   602篇
  2007年   615篇
  2006年   540篇
  2005年   437篇
  2004年   421篇
  2003年   470篇
  2002年   405篇
  2001年   553篇
  2000年   372篇
  1999年   240篇
  1998年   170篇
  1997年   168篇
  1996年   185篇
  1995年   214篇
  1994年   165篇
  1993年   141篇
  1992年   147篇
  1991年   147篇
  1990年   165篇
  1989年   152篇
  1988年   123篇
  1987年   112篇
  1986年   102篇
  1985年   112篇
  1984年   125篇
  1983年   112篇
  1982年   113篇
  1981年   101篇
  1980年   75篇
  1979年   85篇
  1978年   56篇
  1977年   61篇
  1976年   57篇
  1975年   59篇
  1974年   60篇
  1973年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
651.
In this experimental study, the biogas digestate from mesophilic batch anaerobic co-digestion of poultry manure and an agricultural residue, sunflower hulls, was characterized, particularly in terms of heavy metal content, in order to evaluate whether the biogas digestate was suitable for land applications. Ni, Zn, Cu, Pb, Cr, Cd, and Hg were detected in the biogas digestate in each trial, however, their concentrations were always lower than the limit values stated in Turkish regulations. The main source of heavy metals in the biogas digestate seemed to be the poultry manure, not the agricultural residue. The commercial feedstuffs that are frequently supplemented with various essential elements to promote optimum nutrient supply and optimum growth rates may have contributed to heavy metals presence in the biogas digestate. The results indicated that the biogas digestate from anaerobic co-digestion of manure and agricultural residue could be utilized as fertilizer in agricultural applications.  相似文献   
652.
The data mining/groundwater modeling methodology developed in McDade et al. (2013) was performed to determine if matrix diffusion is a plausible explanation for the lower‐concentration but persistent chlorinated solvent plumes in the groundwater‐bearing units at three different pump‐and‐treat systems. Capture‐zone maps were evaluated, and eight wells were identified that did not draw water from any of the historical source areas but captured water from the sides of the plume. Two groundwater models were applied to study the persistence of the plumes in the absence of contributions from the historical source zones. In the wells modeled, the observed mass discharge generally decreased by about one order of magnitude or less over 4 to 10 years of pumping, and 1.8 to 17 pore volumes were extracted. In five of the eight wells, the matrix diffusion model fit the data much better than the advection dispersion retardation model, indicating that matrix diffusion better explains the persistent plume. In the three other wells, confounding factors, such as a changing capture zone over time (caused by changes in pumping rates in adjacent extraction wells); potential interference from a high‐concentration unremediated source zone; and limited number of pore volumes removed made it difficult to confirm that matrix diffusion processes were active in these areas. Overall, the results from the five wells indicate that mass discharge rates from the pumping wells will continue to show a characteristic “long tail'' of mass removal from zones affected by active matrix diffusion processes. Future site management activities should include matrix diffusion processes in the conceptual site models for these three sites. © 2013 Wiley Periodicals, Inc.  相似文献   
653.
The main goal of this study was to assess both mercury (Hg) accumulation and organs’ specific oxidative stress responses of gills, liver and kidney of Dicentrarchus labrax with emphasis on seasonality. Fish were collected in cold and warm periods in three stations: reference, moderated and highly contaminated sites. Our results showed that seasonal factors slightly influenced Hg accumulation between year periods (cold and warm) and strongly affected organs’ response basal levels. In contrast, seasonality seemed not to influence oxidative stress responses, since similar response patterns were obtained for both year periods, and moderate degree of antioxidant responses was obtained. Moreover, the oxidative stress profile may be attributed to Hg contamination degree, which showed organ-specific response and accumulation patterns. Hence, gills showed to be able to adapt to Hg contamination, and in opposition, kidney and liver demonstrated some vulnerability to Hg toxicity. The critical Hg concentrations indicated specific threshold limits for each organ. Overall, seasonality should be taken into account in monitoring programmes, helping to characterize the individuals’ reference values of response and thus to discriminate between the effects induced by natural causes or by contamination.  相似文献   
654.
Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a “fingerprint” of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8–2.0 ppmv). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1,3,5-trimethylbenzene, toluene, and benzene) thus constitute a potential fingerprint of emissions associated with compression.

Implications: Information regarding air emissions from shale gas development and production is critically important given production is now occurring in highly urbanized areas across the United States. Methane, the primary shale gas constituent, contributes substantially to climate change; other natural gas constituents are known to have adverse health effects. This study goes beyond previous Barnett Shale field studies by encompassing a wider variety of production equipment (wells, tanks, compressors, and separators) and a wider geographical region. The principal components analysis, unique to this study, provides valuable information regarding the ability to anticipate associated shale gas chemical constituents.  相似文献   

655.
This study presents an evaluation of summertime ozone concentrations over North America (NA) and Europe (EU) using the database generated from Phase 1 of the Air Quality Model Evaluation International Initiative (AQMEII). The analysis focuses on identifying temporal and spatial features that can be used to stratify operational model evaluation metrics and to test the extent to which the various modeling systems can replicate the features seen in the observations. Using a synoptic map typing approach, it is demonstrated that model performance varies with meteorological conditions associated with specific synoptic-scale flow patterns over both eastern NA and EU. For example, the root mean square error of simulated daily maximum 8-hr ozone was twice as high when cloud fractions were high compared with when cloud fractions were low over eastern NA. Furthermore, results show that over both NA and EU the regional models participating in AQMEII were able to better reproduce the observed variance in ambient ozone levels than the global model used to specify chemical boundary conditions, although the variance simulated by almost all regional models is still less that the observed variance on all spatiotemporal scales. In addition, all modeling systems showed poor correlations with observed fluctuations on the intraday time scale over both NA and EU. Furthermore, a methodology is introduced to distinguish between locally influenced and regionally representative sites for the purpose of model evaluation. Results reveal that all models have worse model performance at locally influenced sites. Overall, the analyses presented in this paper show how observed temporal and spatial information can be used to stratify operational model performance statistics and to test the modeling systems’ ability to replicate observed temporal and spatial features, especially at scales the modeling systems are designed to capture.
Implications: The analyses presented in this paper demonstrate how observed temporal and spatial information can be used to stratify operational model performance and to test the modeling systems’ ability to replicate observed temporal and spatial features. Decisions for the improvement of regional air quality models should be based on the information derived from only regionally representative sites.  相似文献   
656.
This study evaluates effects of good burning practice and correct installation and management of wood heaters on indoor air pollution in an Italian rural area. The same study attests the role of education in mitigating wood smoke pollution. In August 2007 and winters of 2007 and 2008, in a little mountain village of Liguria Apennines (Italy), indoor and outdoor benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations were measured in nine wood-heated houses. During the first sampling, several mistakes in heating plant installations and management were found in all houses. Indoor BTEX concentrations increased during use of wood burning. Low toluene/benzene ratios were in agreement with wood smoke as main indoor and outdoor pollution source. Other BTEX sources were identified as the indoor use of solvents and paints and incense burning. Results obtained during 2007 were presented and discussed with homeowners. Following this preventive intervention, in the second winter sampling all indoor BTEX concentrations decreased, in spite of the colder outdoor air temperatures. Information provided to families has induced the adoption of effective good practices in stoves and fire management. These results highlight the importance of education, supported by reliable data on air pollution, as an effective method to reduce wood smoke exposures.
Implications:Information about burning practices and correct installation and management of wood heaters, supported by reliable data on indoor and outdoor pollution, may help to identify and remove indoor pollution sources. This can be an effective strategy in mitigate wood smoke pollution.  相似文献   
657.
This study characterized organic compounds found in New York State manufactured gas plant (MGP) coal tar vapors using controlled laboratory experiments from four separate MGP sites. In addition, a limited number of deep (0.3–1.2 m above coal tar) and shallow (1.2–2.4 m above coal tar) soil vapor samples were collected above the in situ coal tar source at three of these sites. A total of 29 compounds were consistently detected in the laboratory-generated coal tar vapors at 50°C, whereas 24 compounds were detected at 10°C. The compounds detected in the field sample results were inconsistent with the compounds found in the laboratory-generated samples. Concentrations of compounds in the shallow soil vapor sample were either non-detectable or substantially lower than those found in deeper samples, suggesting attenuation in the vadose zone. Laboratory-generated data at 50°C compared the (% non-aromatic)/(% aromatic) ratio and indicated that this ratio may provide good discrimination between coal tar vapor and common petroleum distillates.  相似文献   
658.
The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range below 2.5 μm aerodynamic diameter (PM2.5; fine particles). The network peaked at more than 260 sites in 2005. In response to the 1999 Regional Haze Rule and the need to better understand the regional transport of PM, EPA also augmented the long-existing Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility monitoring network in 2000, adding nearly 100 additional IMPROVE sites in rural Class 1 Areas across the country. Both networks measure the major chemical components of PM2.5 using historically accepted filter-based methods. Components measured by both networks include major anions, carbonaceous material, and a series of trace elements. CSN also measures ammonium and other cations directly, whereas IMPROVE estimates ammonium assuming complete neutralization of the measured sulfate and nitrate. IMPROVE also measures chloride and nitrite. In general, the field and laboratory approaches used in the two networks are similar; however, there are numerous, often subtle differences in sampling and chemical analysis methods, shipping, and quality control practices. These could potentially affect merging the two data sets when used to understand better the impact of sources on PM concentrations and the regional nature and long-range transport of PM2.5. This paper describes, for the first time in the peer-reviewed literature, these networks as they have existed since 2000, outlines differences in field and laboratory approaches, provides a summary of the analytical parameters that address data uncertainty, and summarizes major network changes since the inception of CSN.
ImplicationsTwo long-term chemical speciation particle monitoring networks have operated simultaneously in the United States since 2001, when the EPA began regular operations of its PM2.5 Chemical Speciation Monitoring Network (IMPROVE began in 1988). These networks use similar field sampling and analytical methods, but there are numerous, often subtle differences in equipment and methodologies that can affect the results. This paper describes these networks since 2000 (inception of CSN) and their differences, and summarizes the analytical parameters that address data uncertainty, providing researchers and policymakers with background information they may need (e.g., for 2018 PM2.5 designation and State Implementation Plan process; McCarthy, 2013) to assess results from each network and decide how these data sets can be mutually employed for enhanced analyses. Changes in CSN and IMPROVE that have occurred over the years also are described.  相似文献   
659.
Bioprocesses, such as biofiltration, are commonly used to treat industrial effluents containing volatile organic compounds (VOCs) at low concentrations. Nevertheless, the use of biofiltration for indoor air pollution (IAP) treatment requires adjustments depending on specific indoor environments. Therefore, this study focuses on the convenience of a hybrid biological process for IAP treatment. A biofiltration reactor using a green waste compost was combined with an adsorption column filled with activated carbon (AC). This system treated a toluene-micropolluted effluent (concentration between 17 and 52 µg/m3), exhibiting concentration peaks close to 733 µg/m3 for a few hours per day. High removal efficiency was obtained despite changes in toluene inlet load (from 4.2 × 10?3 to 0.20 g/m3/hr), which proves the hybrid system’s effectiveness. In fact, during unexpected concentration changes, the efficiency of the biofilter is greatly decreased, but the adsorption column maintains the high efficiency of the entire process (removal efficiency [RE] close to 100%). Moreover, the adsorption column after biofiltration is able to deal with the problem of the emission of particles and/or microorganisms from the biofilter.
ImplicationsIndoor air pollution is nowadays recognized as a major environmental and health issue. This original study investigates the performance of a hybrid biological process combining a biofilter and an adsorption column for removal of indoor VOCs, specifically toluene.  相似文献   
660.
Two industrial sites were investigated based on years of available hydrogeologic information and monitoring data for soil and groundwater. Collected data were forensically evaluated using age-dating and fingerprinting methods. The previous business uses of the project sites were as a gas station, laundry/dry-cleaning service, and car wash with petroleum underground storage tanks (USTs). As a result, these sites were exposed to a number of toxic contaminants at relatively high concentrations. Source control was necessary for successful remediation and the ultimate removal of the remaining compounds from these industrial sites. Although contaminated soil around the source was excavated during the remedial action and the high concentrations of contaminants were reduced, typical groundwater contaminants such as petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, ethylbenzene, xylenes (BTEX), and oxygenates including methyl tert-butyl ether (MTBE), diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert-amyl methyl ether (TAME), and tert-butyl alcohol (TBA) were persistently found at the studied sites around the source points. The plume and concentration of contaminants had changed their shapes and strength for all monitoring periods. Thus, additional source control seems to be a requirement for the complete removal of source contamination, which must be ascertained with groundwater and soil monitoring on a regular time base. For the study sites, monitored natural attenuation was relatively feasible for the long-term plan; however, it did not offer a perfect remediation solution for an ultimate goal because of residual toxic compounds that might have affected the surrounding residential areas at higher concentrations than their health limits. Therefore, as a remediation strategy, the combination of clean-up technology and natural attenuation with monitoring activities are more highly recommended than either clean-up or natural attenuation used separately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号