A model simulating pollutant exchange with isolated leaves that integrates factors which have been found to be important in regulating pollutant uptake by leaves is presented. The model is patterned after an electrical analogue simulator and was designed to emphasize the effects of pollutant and leaf properties on the process. The article discusses the relative significance of factors affecting gas transfer, sorption of pollutants by leaf surfaces, and pollutant solubility and fate on the uptake process. Data is presented showing uptake of ozone by exposed mesophyll and several epidermal surfaces chosen for their different surface characteristics. The model was used to derive a mathematical expression for the exchange process which was rearranged to define internal (average) pollutant solute concentration in terms of external concentration, leaf and boundary layer diffusion resistance, surface sorption and pollutant solubility. The importance of estimating internal solute concentration is discussed. 相似文献
Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery. 相似文献
Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common co-occurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species. 相似文献
Acute respiratory infections are common in children below 5 years and recent studies suggest a possible link with air pollution. In this study, we investigated the association between ambient nitrogen oxides (NOx) and bronchitis or upper airway inflammation.This longitudinal study was conducted in Teplice and Prachatice districts, Czech Republic. Children were followed from birth to 4.5 years of age. Data were compiled from medical records at delivery and at follow up, and from self-administered questionnaires from the same two time points. Air pollution monitoring data were used to estimate exposure over five different averaging periods ranging from three to 45 days prior to an episode. To quantify the association between exposure and outcome, while accounting for repeated measure correlation we conducted logistic regression analysis using generalized estimating equations.During the first 2 years of life, the adjusted rate ratio for bronchitis associated with interquartile increase in the 30-day average NOx was 1.31 [95% confidence interval (CI): 1.07, 1.61] and for two to 4.5 year olds, it was 1.23 (95% CI: 1.01, 1.49). The 14-day exposure also had stable association across both age groups: below 2 years it was 1.25 (95% CI: 1.06, 1.47) and for two to 4.5 years it was 1.21 (95% CI: 1.06, 1.39). The association between bronchitis and NOx increased with child's age in the under 2 years group, which is a relatively novel finding.The results demonstrate an association between NOx and respiratory infections that are sufficiently severe to come to medical attention. The evidence, if causal, can be of public health concern because acute respiratory illnesses are common in preschool children. 相似文献
Understanding how cities can transform organic waste into a valuable resource is critical to urban sustainability. The capture and recycling of phosphorus (P), and other essential nutrients, from human excreta is particularly important as an alternative organic fertilizer source for agriculture. However, the complex set of socio-environmental factors influencing urban human excreta management is not yet sufficiently integrated into sustainable P research. Here, we synthesize information about the pathways P can take through urban sanitation systems along with barriers and facilitators to P recycling across cities. We examine five case study cities by using a sanitation chains approach: Accra, Ghana; Buenos Aires, Argentina; Beijing, China; Baltimore, USA; and London, England. Our cross-city comparison shows that London and Baltimore recycle a larger percentage of P from human excreta back to agricultural lands than other cities, and that there is a large diversity in socio-environmental factors that affect the patterns of recycling observed across cities. Our research highlights conditions that may be “necessary but not sufficient” for P recycling, including access to capital resources. Path dependencies of large sanitation infrastructure investments in the Global North contrast with rapidly urbanizing cities in the Global South, which present opportunities for alternative sanitation development pathways. Understanding such city-specific social and environmental barriers to P recycling options could help address multiple interacting societal objectives related to sanitation and provide options for satisfying global agricultural nutrient demand.
Legislation settling the Alaska Native Lands Claims also resulted in the establishment of ten new parks and preserves in Alaska. This settlement was the result of a long and often bitter legislative struggle between pro- and antidevelopment groups. The planning history of the Wrangell-St. Elias National Park and Preserve is used as a case example of this debate. One particular source of conflict was the curtailment of sport hunting that would result under national park classification. A preserve classification was introduced to resolve this conflict. Data on wildlife resources and sport hunting were instrumental in defining the areas so classified. 相似文献
ABSTRACT. The X-ray fluorescence method was used to analyze trace metals collected in particulate form on filter papers and from the ionic state by ion exchange filter papers. The samples were prepared by allowing water to pass through these filter papers. The procedures necessary for using the X-ray fluorescence method are described. A number of samples were taken from the Great Miami River in Dayton, Ohio over one year showing the presence of the following metals, Ca, Ti, Cr, Fe, Cu, Zn, Sr, and Cd. Elements in the periodic table between Ti and Cs were detectable to a sensitivity limit of the order of 30 ppb for metals in the particulate form and 0.4 ppm for metals in the ionic form. 相似文献
Ascidian specimens were collected from the Indian River Lagoon, Florida, USA, in November 1987. Eudistoma olivaceum (Van Name) was fouled by only two species of epifaunal invertebrates and the percent cover of epibionts was negligible. Colonies of E. capsulatum (Van Name) were fouled by up to 17 species of epifaunal invertebrates, epibionts covered an average of 12.5% of the surface area of these colonies. Extracts of E. olivaceum exhibited potent cytotoxic, antimicrobial and antiviral activity in laboratory bioassays, while the activity of extracts of E. capsulatum was insignificant. The toxicity of extracts of each ascidian was negatively related to the percent cover of fouling organisms. Surface acidity of each ascidian was positively related to the percent cover of epibionts: E. olivaceum was nearly neutral (pH=6), while E. capsulatum was highly acidic (pH=1 to 2). Larval settlement and growth of ancestrulae of the cheilostome bryozoan Bugula neritina (Linnaeus) were inhibited at very low concentrations of crude extract of E. olivaceum. Crude extracts of E. capsulatum inhibited settlement and growth of B. neritina only at concentrations of approximately an order of magnitude greater than those of E. olivaceum. Differences in the degree to which these congeneric ascidians are fouled is related to differences in the chemical defenses they possess. Acidity is not an effective inhibitor of settlement by epifaunal invertebrates. 相似文献