首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   14篇
  国内免费   2篇
安全科学   23篇
废物处理   12篇
环保管理   53篇
综合类   32篇
基础理论   108篇
污染及防治   70篇
评价与监测   23篇
社会与环境   23篇
灾害及防治   5篇
  2023年   2篇
  2022年   4篇
  2020年   10篇
  2019年   2篇
  2018年   7篇
  2017年   8篇
  2016年   14篇
  2015年   9篇
  2014年   10篇
  2013年   36篇
  2012年   15篇
  2011年   17篇
  2010年   9篇
  2009年   6篇
  2008年   23篇
  2007年   20篇
  2006年   22篇
  2005年   15篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   9篇
  1999年   5篇
  1998年   7篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   7篇
  1987年   4篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1969年   2篇
  1967年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
41.
Relationships between catchment characteristics of 31 alpine lakes and observed trends in lake water concentrations of nitrate were evaluated in the Tatra Mountains. Nitrate concentrations increased from background levels <4 microeql(-1) in the 1930s to maxima (up to 55 microeql(-1)) in the 1980s, after which they declined to 4-44 microeql(-1) by the late 1990s. In-lake nitrate concentrations correlated negatively with parameters characterising catchment-weighted mean pools (CWM; kgm(-2)) of soil, i.e. with percent land cover with meadow and soil depth, and positively with grade of terrain, annual precipitation, and the highest elevation in the catchment. The CWM pool of soil and annual precipitation explained together 65% of the current spatial variability in nitrate concentrations. Denitrification and direct N deposition on surface area explained 14% of the variability. Increased atmospheric N deposition and declining net N retention in soils were responsible for long-term changes in nitrate concentrations. Long-term decline in %N retention in soils decreased along with the estimated decline in C:N ratios (from 21 to 18 on average during the last 70 years). An empirical model linking nitrate concentrations in different types of alpine Tatra Mountain lakes to four independent variables (CWM soil pool, annual precipitation, increased N deposition, and average trend in soil C:N ratios) explained 80% of the observed spatial and temporal nitrate variability over the period 1937-2000.  相似文献   
42.
6+ ), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), zinc (Zn), and polychlorinated biphenyls (PCBs). Water-column, bed-sediment, and fish-tissue (fillets) data collected by five government agencies comprised the ambient data set; effluent data from five registered facilities comprised the compliance data set. The nonparametric Mann-Kendall trend test indicated that 33% of temporal trends in all data were statistically significant (P < 0.05). Possible reasons for this were low sample sizes, and a high percentage of samples below the analytical detection limit. Trends in compliance data were more distinct; most trace elements decreased significantly, probably due to improvements in wastewater treatment. Seven trace elements (Cr, Cd, Cu, Pb, Hg, Ni, and Zn) had statistically significant decreases in wastewater and portions of either or both ambient water and bed sediment. No trends were found in fish tissue. Inconsistency in trends between ambient and compliance data were often found for individual constituents, making overall similarity between the data sets difficult to determine. Logistical differences in monitoring programs, such as varying field and laboratory methods among agencies, made it difficult to assess ambient temporal trends.  相似文献   
43.
44.
Wright JT  Gribben PE  Byers JE  Monro K 《Ecology》2012,93(6):1262-1268
Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common co-occurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species.  相似文献   
45.
Determining the scale of larval dispersal and population connectivity in demersal fishes is a major challenge in marine ecology. Historically, considerations of larval dispersal have ignored the possible contributions of larval behaviour, but we show here that even young, small larvae have swimming, orientation and vertical positioning capabilities that can strongly influence dispersal outcomes. Using young (11–15 days), relatively poorly developed (8–10 mm), larvae of the pomacentrid damselfish, Amblyglyphidodon curacao (identified using mitochondrial DNA), we studied behaviour relevant to dispersal in the laboratory and sea on windward and leeward sides of Lizard Island, Great Barrier Reef. Behaviour varied little with size over the narrow size range examined. Critical speed was 27.5 ± 1.0 cm s−1 (30.9 BL s−1), and in situ speed was 13.6 ± 0.6 cm s−1. Fastest individuals were 44.6 and 25.0 cm s−1, for critical and in situ speeds, respectively. In situ speed was about 50% of critical speed and equalled mean current speed. Unfed larvae swam 172 ± 29 h at 8–10 cm s−1 (52.0 ± 8.6 km), and lost 25% wet weight over that time. Vertical distribution differed between locations: modal depth was 2.5–5.0 and 10.0–12.5 m at leeward and windward sites, respectively. Over 80% of 71 larvae observed in situ had directional swimming trajectories. Larvae avoided NW bearings, with an overall mean SE swimming direction, regardless of the direction to nearest settlement habitat. Larvae made smaller changes between sequential bearings of swimming direction when swimming SE than in other directions, making it more likely they would continue to swim SE. When swimming NW, 62% of turns were left (more than in other directions), which would quickly result in swimming direction changing away from NW. This demonstrates the larvae knew the direction in which they were swimming and provides insight into how they achieved SE swimming direction. Although the cues used for orientation are unclear, some possibilities seemingly can be eliminated. Thus, A. curacao larvae near Lizard Island, on average swam into the average current at a speed equivalent to it, could do this for many hours, and chose different depths in different locations. These behaviours will strongly influence dispersal, and are similar to behaviour of other settlement-stage pomacentrid larvae that are older and larger.  相似文献   
46.
Conservation decisions are invariably made with incomplete data on species’ distributions, habitats, and threats, but frameworks for allocating conservation investments rarely account for missing data. We examined how explicit consideration of missing data can boost return on investment in ecosystem restoration, focusing on the challenge of restoring aquatic ecosystem connectivity by removing dams and road crossings from rivers. A novel way of integrating the presence of unmapped barriers into a barrier optimization model was developed and applied to the U.S. state of Maine to maximize expected habitat gain for migratory fish. Failing to account for unmapped barriers during prioritization led to nearly 50% lower habitat gain than was anticipated using a conventional barrier optimization approach. Explicitly acknowledging that data are incomplete during project selection, however, boosted expected habitat gains by 20–273% on average, depending on the true number of unmapped barriers. Importantly, these gains occurred without additional data. Simply acknowledging that some barriers were unmapped, regardless of their precise number and location, improved conservation outcomes. Given incomplete data on ecosystems worldwide, our results demonstrate the value of accounting for data shortcomings during project selection.  相似文献   
47.
Controlling invasive species is critical for conservation but can have unintended consequences for native species and divert resources away from other efforts. This dilemma occurs on a grand scale in the North American Great Lakes, where dams and culverts block tributary access to habitat of desirable fish species and are a lynchpin of long‐standing efforts to limit ecological damage inflicted by the invasive, parasitic sea lamprey (Petromyzon marinus). Habitat restoration and sea‐lamprey control create conflicting goals for managing aging infrastructure. We used optimization to minimize opportunity costs of habitat gains for 37 desirable migratory fishes that arose from restricting sea lamprey access (0–25% increase) when selecting barriers for removal under a limited budget (US$1–105 million). Imposing limits on sea lamprey habitat reduced gains in tributary access for desirable species by 15–50% relative to an unconstrained scenario. Additional investment to offset the effect of limiting sea‐lamprey access resulted in high opportunity costs for 30 of 37 species (e.g., an additional US$20–80 million for lake sturgeon [Acipenser fulvescens]) and often required ≥5% increase in sea‐lamprey access to identify barrier‐removal solutions adhering to the budget and limiting access. Narrowly distributed species exhibited the highest opportunity costs but benefited more at less cost when small increases in sea‐lamprey access were allowed. Our results illustrate the value of optimization in limiting opportunity costs when balancing invasion control against restoration benefits for diverse desirable species. Such trade‐off analyses are essential to the restoration of connectivity within fragmented rivers without unleashing invaders.  相似文献   
48.
The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait‐based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co‐occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue‐chemistry traits differed significantly between rare and common, co‐occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting.  相似文献   
49.
50.

Understanding how cities can transform organic waste into a valuable resource is critical to urban sustainability. The capture and recycling of phosphorus (P), and other essential nutrients, from human excreta is particularly important as an alternative organic fertilizer source for agriculture. However, the complex set of socio-environmental factors influencing urban human excreta management is not yet sufficiently integrated into sustainable P research. Here, we synthesize information about the pathways P can take through urban sanitation systems along with barriers and facilitators to P recycling across cities. We examine five case study cities by using a sanitation chains approach: Accra, Ghana; Buenos Aires, Argentina; Beijing, China; Baltimore, USA; and London, England. Our cross-city comparison shows that London and Baltimore recycle a larger percentage of P from human excreta back to agricultural lands than other cities, and that there is a large diversity in socio-environmental factors that affect the patterns of recycling observed across cities. Our research highlights conditions that may be “necessary but not sufficient” for P recycling, including access to capital resources. Path dependencies of large sanitation infrastructure investments in the Global North contrast with rapidly urbanizing cities in the Global South, which present opportunities for alternative sanitation development pathways. Understanding such city-specific social and environmental barriers to P recycling options could help address multiple interacting societal objectives related to sanitation and provide options for satisfying global agricultural nutrient demand.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号