首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1009篇
  免费   13篇
  国内免费   11篇
安全科学   42篇
废物处理   37篇
环保管理   221篇
综合类   133篇
基础理论   251篇
污染及防治   240篇
评价与监测   75篇
社会与环境   27篇
灾害及防治   7篇
  2023年   7篇
  2022年   10篇
  2021年   10篇
  2020年   17篇
  2019年   14篇
  2018年   17篇
  2017年   13篇
  2016年   24篇
  2015年   23篇
  2014年   38篇
  2013年   99篇
  2012年   40篇
  2011年   61篇
  2010年   37篇
  2009年   50篇
  2008年   49篇
  2007年   70篇
  2006年   38篇
  2005年   40篇
  2004年   31篇
  2003年   32篇
  2002年   33篇
  2001年   28篇
  2000年   16篇
  1999年   13篇
  1998年   13篇
  1997年   14篇
  1996年   15篇
  1995年   7篇
  1994年   17篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   10篇
  1989年   12篇
  1988年   6篇
  1987年   10篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   12篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1975年   8篇
  1974年   5篇
  1972年   3篇
排序方式: 共有1033条查询结果,搜索用时 353 毫秒
61.
The impact of co-solutes on sorption of tetrachloroethene (PCE) by two porous media with low organic-carbon contents was examined by conducting batch experiments. The two media (Borden and Eustis) have similar physical properties, but significantly different organic-carbon (OC) contents. Sorption of PCE was nonlinear for both media, and well-described by the Freundlich equation. For the Borden aquifer material (OC = 0.03%), the isotherms measured with a suite of co-solutes present (1,2-dichlorobenzene, bromoform, carbon tetrachloride, and hexachloroethane) were identical to the isotherms measured for PCE alone. These results indicate that there was no measurable impact of the co-solutes on PCE sorption for this system. In contrast to the Borden results, there was a measurable reduction in sorption of PCE by the Eustis soil (OC = 0.38%) in the presence of the co-solutes. The organic-carbon fractions of both media contain hard-carbon components, which have been associated with the manifestation of nonideal sorption phenomena. The disparity in results observed for the two media may relate to relative differences in the magnitude and geochemical nature of these hard-carbon components.  相似文献   
62.
Occurrence and fate of 45 pesticides and 40 pesticide degradates were investigated in four contrasting agricultural settings--in Maryland, Nebraska, California, and Washington. Primary crops included corn at all sites, soybeans in Maryland, orchards in California and Washington, and vineyards in Washington. Pesticides and pesticide degradates detected in water samples from all four areas were predominantly from two classes of herbicides--triazines and chloroacetanilides; insecticides and fungicides were not present in the shallow ground water. In most samples, pesticide degradates greatly exceeded the concentrations of parent pesticide. In samples from Nebraska, the parent pesticide atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] was about the same concentration as the degradate, but in samples from Maryland and California atrazine concentrations were substantially smaller than its degradate. Simazine [6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine], the second most detected triazine, was detected in ground water from Maryland, California, and Washington. Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] rarely was detected without its degradates, and when they were detected in the same sample metolachlor always had smaller concentrations. The Root-Zone Water-Quality Model was used to examine the occurrence and fate of metolachlor at the Maryland site. Simulations accurately predicted which metolachlor degradate would be predominant in the unsaturated zone. In analyses of relations among redox indicators and pesticide variance, apparent age, concentrations of dissolved oxygen, and excess nitrogen gas (from denitrification) were important indicators of the presence and concentration of pesticides in these ground water systems.  相似文献   
63.
A simple model predicting bathing water concentrations of Escherichia coli from livestock in the Irvine catchment in SW Scotland has been adapted for intestinal enterococci (IE). This has been used to predict risk of bather illness by extrapolation of published data on bather IE exposure vs incidence of gastro-enteritis. Simulated reduction in the risk of illness by reduced faecal loading was multiplied by a willingness to pay for risk reduction to estimate the annual benefits of mitigation. Health benefits of reducing loading by 75% at Irvine Beach were estimated by a willingness to pay method to be about pound 276k pa. Estimated annualised costs of diffuse pollution mitigation measures across the catchment were higher (> pound 1m), and it is very unlikely that 75% mitigation is achievable with current stocking rates. Further work should explore the influence of uncertainty of model parameters, and use emerging epidemiological information on specific zoonotic pathogens such as E. coli O157 and Cryptosporidium. Other components of the value of clean water should also be included to obtain a complete estimate of the cost:benefit of mitigation.  相似文献   
64.
65.
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden.  相似文献   
66.
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization.  相似文献   
67.
68.
Because of fast urban sprawl, land use competition, and the gap in available funds and needed funds, municipal decision makers and planners are looking for more cost-effective and sustainable ways to improve their sewer infrastructure systems. The dominant approaches have turned to planning the sanitary sewer systems within a regional context, while the decentralized and on-site/cluster wastewater systems have not overcome the application barriers. But regionalization policy confers uncertainties and risks upon cities while planning for future events. Following the philosophy of smart growth, this paper presents several optimal expansion schemes for a fast-growing city in the US/Mexico borderlands—the city of Pharr in Texas under uncertainty. The waste stream generated in Pharr is divided into three distinct sewer sheds within the city limit, including south region, central region, and north region. The options available include routing the wastewater to a neighboring municipality (i.e., McAllen) for treatment and reuse, expanding the existing wastewater treatment plant (WWTP) in the south sewer shed, and constructing a new WWTP in the north sewer shed. Traditional deterministic least-cost optimization applied in the first stage can provide a cost-effective and technology-based decision without respect to associated uncertainties system wide. As the model is primarily driven by the fees charged for wastewater transfer, sensitivity analysis was emphasized by the inclusion of varying flat-rate fees for adjustable transfer schemes before contracting process that may support the assessment of fiscal benefits to all parties involved. Yet uncertainties might arise from wastewater generation, wastewater reuse, and cost increase in constructing and operating the new wastewater treatment plant simultaneously. When dealing with multiple sources of uncertainty, the grey mixed integer programming (GIP) model, formulated in the second stage, can further allow all sources of uncertainties to propagate throughout the optimization context, simultaneously leading to determine a wealth of optimal decisions within a reasonable range. Both models ran for three 5-year periods beginning in 2005 and ending in 2020. The dynamic outputs of this analysis reflect the systematic concerns about integrative uncertainties within this decision analysis, which enable decision makers and stakeholders to make all-inclusive decisions for sanitary sewer system expansion in an economically growing region.  相似文献   
69.
ABSTRACT

Linhong Jing completed a master's degree in chemistry at UNLV and is currently enrolled in the Ph.D. program at Purdue University. Her address is Department of Chemistry, Purdue University, West Lafayette, IN 47907. Dr. Spencer Steinberg is an associate professor of chemistry at UNLV. His address is UNLV Department of Chemistry, P.O. Box 454003, Las Vegas, NV 89154-4003. Dr. Brian Johnson is an associate professor of chemistry at UNLV. His address is UNLV Department of Chemistry, P.O. Box 454003, Las Vegas, NV 89154-4003.

Oxidation of benzene, toluene, ethylbenzene, and xylenes (BTEX) in air, of significance due to, for example, the potential for O3 formation, is believed to be initiated by OH attack on the ring (addition) or on the alkyl side chain (H abstraction). A series of ring-breaking reactions follows, with major products predicted to be a-dicarbonyls, simple aldehydes, and organic acids. To test this prediction, ambient air mixing ratios of aldehydes (formaldehyde, ac-etaldehyde, benzaldehyde, glyoxal, and pyruvaldehyde), along with some supporting BTEX data, were measured at an urban site in Las Vegas, NV. Samples were collected on sorbents and determined by chromatographic methods; mixing ratios were compared to ambient levels of CO, O3, and NOx. A meteorological analysis (temperature, wind speed, and wind direction) was also included. Statistically significant relationships were noted among the BTEX hydrocarbons (HCs) and among the photochemi-cally derived species (e.g., O3, NO2, and some of the aldehydes), although there was seasonal variation. The observations are consistent with a common primary source (i.e., vehicular exhaust or fuel evaporation) for the BTEX compounds and a common secondary source (e.g., OH attack) for glyoxal and pyruvaldehyde.  相似文献   
70.
Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km2) is estimated to be in excess of the N CL. Low CL values (3–8 kg N ha?1 yr?1) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3–15% of the forested and chaparral land areas are estimated to be in exceedance of the NO3? leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha?1 yr?1. In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha?1 yr?1, and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha?1 yr?1. Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号