首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27558篇
  免费   228篇
  国内免费   237篇
安全科学   709篇
废物处理   1087篇
环保管理   3181篇
综合类   6058篇
基础理论   6736篇
环境理论   20篇
污染及防治   6862篇
评价与监测   1824篇
社会与环境   1392篇
灾害及防治   154篇
  2022年   237篇
  2021年   209篇
  2019年   211篇
  2018年   396篇
  2017年   406篇
  2016年   561篇
  2015年   466篇
  2014年   708篇
  2013年   1927篇
  2012年   841篇
  2011年   1160篇
  2010年   912篇
  2009年   1029篇
  2008年   1160篇
  2007年   1151篇
  2006年   1045篇
  2005年   926篇
  2004年   831篇
  2003年   842篇
  2002年   835篇
  2001年   1034篇
  2000年   709篇
  1999年   462篇
  1998年   293篇
  1997年   324篇
  1996年   343篇
  1995年   379篇
  1994年   383篇
  1993年   297篇
  1992年   307篇
  1991年   344篇
  1990年   326篇
  1989年   302篇
  1988年   273篇
  1987年   211篇
  1986年   239篇
  1985年   224篇
  1984年   230篇
  1983年   226篇
  1982年   240篇
  1981年   233篇
  1980年   184篇
  1979年   211篇
  1978年   181篇
  1977年   172篇
  1976年   174篇
  1974年   174篇
  1973年   164篇
  1972年   159篇
  1967年   173篇
排序方式: 共有10000条查询结果,搜索用时 34 毫秒
791.
Cameron Highlands is a mountainous region with steep slopes. Gradients exceeding 20 are common. The climate is favourable to the cultivation of tea, sub-tropical vegetables and flowers (under rain-shelter). Crop production is sustained by high fertiliser and manure applications. However, agriculture in this environment is characterised by high levels of soil erosion and environmental pollution. A study on the sustainability of these agro-ecosystems was conducted. Results indicated that soil loss was in the range of 24–42 ton/ha/yr under vegetables and 1.3 ton under rain-shelter. Sediment load in the vegetable sub-catchment reached 3.5 g/L, 50 times higher than that associated with flowers under rain-shelter and tea. The sediments contained high nutrient loads of up to 470 kg N/ha/yr. The N, P and K lost in runoff from cabbage farms was 154 kg/season/ha, whereas in chrysanthemum farms it was 5 kg. In cabbage farms, the N, P, and K lost through leaching was 193 kg/season/ha. The NO3–N concentration in the runoff from the cabbage farms reached 25 ppm but less than 10 ppm in runoff from rain-shelters. Inorganic pollution in the rivers was within the acceptable limit of 10 ppm. The sustainability of the agro-ecosystems is in the order of tea { > } rain–shelter ≫ vegetables.  相似文献   
792.
Perth groundwater resources are obtained from three major aquifers that occur beneath the Perth metropolitan area: the Superficial aquifer, Leederville aquifer and Yarragadee aquifer. Each aquifer has a unique seasonal water level pattern controlled by soils, geomorphology and geology. Landuse is mainly responsible for variations in recharge; however, the hydraulic properties control aquifer response and water level pattern to a greater degree. Groundwater in the three aquifers is generally of very good quality except in localised areas. Salinity increases with depth and in direction of groundwater flow in the three aquifers. The best water quality is in the Superficial aquifer in the Wanneroo well field area. The geochemistry and stable isotope signatures from the three major aquifers revealed distinct water types that suggest very little hydraulic connection or mixing of waters between these aquifers at the present abstraction and recharge regimes. The results also show that the Leederville and Yarragadee aquifers were recharged during earlier cooler times while the Superficial aquifer is being recharged at present.  相似文献   
793.
Pesticide users, natural resource managers, regulators, government agencies and many others are concerned about the off-site impact of pesticides on the environment. Systematic methods of the assessment of potential risk of pesticides to environmental components can serve as valuable tools in decision making and policy formulation. Simple risk indicators have been developed which cover a range of scenarios such as toxicity to organisms, health of farm workers, consumer health, and residues in harvested produce. The authors have developed a software package named Pesticide Impact Rating Index (PIRI) that outputs an improved pesticide risk indicator for water quality. PIRI is a standalone, user-friendly, platform-independent program. It can be used to (i) rank pesticides in terms of their relative pollution potential to groundwater or surface water, and (ii) to compare different land uses in a catchment or at a regional scale in terms of their relative impact on water quality. It is based on pesticides use; the pathway through which the pesticides are released to the water resources (drift, runoff, erosion, leaching) and the value of the water resources threatened. Each component is quantified using pesticide characteristics (including toxicity to organisms at different trophic levels, i.e. fish, daphnia, algae, etc.), environmental and site conditions (e.g. organic carbon content of soil, water input, slope of land, soil loss, recharge rate, depth of water table, etc.). This paper describes two case studies of the application of PIRI in Australia. The comparison of the risk assessment by PIRI on these revealed that PIRI correctly estimated the pollution potential of pesticides in greater than 80% of cases. A GIS version of PIRI is described in a companion paper in this volume. An erratum to this article is available at .  相似文献   
794.
Amino acids constitute one of the largest inputs of organic nitrogen (N) to most polar soils and have been hypothesized to be important in regulating vegetational succession and productivity in Arctic ecosystems. Our understanding of amino acid cycling in these soils, however, is poor. The aim of this study was to investigate the size and rate of turnover of the amino acid pool in a range of Arctic and Antarctic soils. Our results indicate that in polar soils with either high or low ornithogenic inputs the amino acid pool is small in comparison to the inorganic N pool (NO? 3 and NH+ 4). The free amino acid pool constituted only a small proportion of the total dissolved organic nitrogen (DON) pool in these soils. Here we show that these low concentrations may be due to rapid use by the soil microbial community in both Arctic and Antarctic soils. The turnover of the amino acid pool in soil was extremely rapid, with a half-life ranging from 2 to 24 h, indicating that this N pool can be turned over many hundred times each summer when polar soils are frequently unfrozen. The implications of amino acids in N cycling and plant and microbial nutrition are discussed.  相似文献   
795.
Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha?1 y?1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of “real worl” treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below 4 mM in rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha?1 y?1 adjusted for ambient deposition (8 kg N ha?1 y?1). The 16 and 64 kg N ha?1 y?1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa.  相似文献   
796.
A field ammonia (NH3) release experiment and open top chambers containing moorland monoliths continuously fumigated with NH3 or sprayed with NH4Cl were used to assess the potential for using δ15N values in determining the area of influence around a point NH3 emission source. δ15N values are being increasingly used as environmental tracers and we tested the hypothesis that the δ15N signal from an NH3 emission source is observable in nearby vegetation. Using modified monitoring devices, atmospheric NH3 concentrations were found to decrease with distance from source, with δ15N values also reflecting this trend, producing a signal shift with changing concentration. Open top chamber studies of δ15N values of Calluna vulgaris (L.) Hull indicated a correlation with deposition treatments in current year shoots. Analysis of Calluna shoots from the NH3 release showed a similar trend of δ15N enrichment. Significant linear correlations between δ15N and percent N in plant material were found, both in the controlled conditions of the open top chambers and at the NH3 release site, illustrating the possible use of this technique in N deposition biomonitoring.  相似文献   
797.
The results from three long-term field manipulation studies of the impacts of increased nitrogen deposition (0–120 kg N ha?1 yr?1) on lowland and upland heathlands in the UK were compared, to test if common responses are observed. Consistent increases in Calluna foliar N content and decreases in litter C:N ratios were found across all sites, while increases in N leaching were not observed at any site over the range 0–80 kg ha?1 yr?1. However, the response of Calluna biomass did vary between sites, possibly reflecting site differences in nutrient status and management histories. Five versions of a simulation model of heathland responses to N were developed, each reflecting different assumptions about the fate and turnover of soil N. Model outputs supported the deduction from mass balance calculations at two of the field sites that N additions have resulted in an increase in immobilisation; the latter was needed to prevent the model overestimating measured N leaching. However, this version of the model significantly underestimated Calluna biomass. Model versions, which included uptake of organic N by Callunaand re-mobilisation of N from the soil organic store provided some improvement in the fit between modelled and field biomass data, but re-mobilisation also led to an overestimation of N leaching. Quantification of these processes and their response to increased N deposition are therefore critical to interpreting experimental data and predicting the long-term impacts of atmospheric deposition on heathlands and moorlands.  相似文献   
798.
The industrialization of agriculture not only alters the ways in which agricultural production occurs, but it also impacts the decisions farmers make in important ways. First, constraints created by the economic environment of farming limit what options a farmer has available to him. Second, because of the industrialization of agriculture and the resulting economic pressures it creates for farmers, the fact that decisions are constrained creates new ethical challenges for farmers. Having fewer options when faced with severe economic pressures is a very different situation for farmers than having many options available. We discuss the implications of constrained choice and show that it increases the likelihood that farmers will consider unethical behavior.  相似文献   
799.
Recent research has focused on establishing the values of preserving biodiversity both in agriculture and in less managed ecosystems, and in showing the importance of the role of cultural diversity in preserving biodiversity in food production systems. A study of the philosophy embedded in cultural systems can reveal the importance of the technological information for preserving genetic biodiversity contained in such systems and can be used to support arguments for the protection/preservation of cultural diversity. For example, corn or maize can serve as a paradigm of Native American thinking and can provide one of the few areas from which common philosophical conceptions can emerge. An examination of the cultivation of corn or maize as an agricultural activity and as a cultural activity in Native American literature reveals a philosophy that recognizes the importance of biodiversity and provides techniques for its preservation. Corn, and the food and the materials derived from it, is something thought out, not by specialists, but by the entire tribe and its ancestors, even if this thinking is done within what we might consider a framework of highly mythical notions. Importantly, this framework yields an understanding of both the genetics and nutrition of corn. A survey of these mythical notions (myths and stories) and agricultural practices makes this thought explicit and exemplifies the value of cultural diversity and biodiversity.  相似文献   
800.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号