首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   0篇
  国内免费   10篇
安全科学   3篇
废物处理   39篇
环保管理   9篇
综合类   33篇
基础理论   30篇
污染及防治   54篇
评价与监测   4篇
社会与环境   14篇
  2023年   6篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   4篇
  2015年   9篇
  2014年   14篇
  2013年   14篇
  2012年   9篇
  2011年   11篇
  2010年   6篇
  2009年   13篇
  2008年   9篇
  2007年   14篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   6篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1991年   1篇
  1990年   1篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1974年   1篇
  1959年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
181.
The degradation of two kinds of polyion complex (PIC) fibers, chitosan-gellan (CGF), and poly(L-lysine)-gellan (LGF) fibers, by seven species of soil filamentous fungi has been investigated. All of the pure-line soil filamentous fungi, Aspergillus oryzae, Penicillium caseicolum, P. citrinum, Mucor sp., Rhizopus sp., Curvularia sp., and Cladosporium sp. grew on the two fiber materials. Microscopic observation of the biodegradation processes revealed that P. caseicolum on the CGF and LGF grew, along with the accompanying collapse of the fiber matrices. In the biochemical oxygen-demand (BOD) test, the biodegradation of the LGF by P. caseicolum and Curvularia sp. exceeded 97% carbon dioxide generation and the biodegradation of the CGF by A. oryzae was 59%. These results might offer some clues to the applications of the PIC fibers as environmentally biodegradable materials.  相似文献   
182.
Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.  相似文献   
183.
The distribution and abundance of Japanese common squid [Todarodes pacificus (Steenstrup, 1880)] paralarvae off southern Kyushu Island near the Kuroshio were examined in relation to water types in the region. Surveys were conducted in 1996 and 1997 using paired, 70 cm diameter Bongo nets. Temperature–salinity plots from 0, 50 and 100 m depths were used to assign sampling stations to three water types: inshore, mixing and Kuroshio. In total, 4103 T. pacificus paralarvae were collected at 59 of 72 stations. Catch densities at positive stations ranged between 8 and 4282 ind./50 m2 sea surface area. Catches during both years were highest in mixing waters, followed by inshore and Kuroshio waters. Total catches were highest just north of the oceanographic front at the inshore edge of the Kuroshio and declined with increasing distance away from the front. Catches of paralarvae ≤1.0 mm mantle length also peaked near the front. In both years, ≥85% of all paralarvae and ≥69% of those ≤1.0 mm mantle length occurred less than 25 km from the front. We conclude that most spawning off southwest Kyushu occurs near the frontal zone, where Kuroshio and inshore waters meet. Received: 18 November 1998 / Accepted: 11 May 1999  相似文献   
184.
Livestock manure is suitable for use as a composting material. However, various intestinal microbes, such as Escherichia coli, are significant components of such manures. Thus, it is desirable that the level of intestinal microbes, and particularly opportunistic pathogens, in compost is inspected and counted regularly. The sensitivity and specificity of detection of E. coli in compost have been improved by selective cultivation followed by colony polymerase chain reaction (PCR) using the ECO primer. Indeed, the sensitivity of this method is higher than that of DNA extraction from compost and PCR. In this study, changes in numbers of E. coli present in a field-scale composting process over time was assessed using selective cultivation and colony PCR. Numbers of ECO-positive colonies after 24 h decreased, with a concomitant rise in compost temperature. ECO-positive colonies were not detected from 33 to 48 h. However, ECO-positive colony numbers increased beginning on day 4 and continuing until day 42. Thus, it seems likely that the high temperatures reached during the composting process did not affect E. coli numbers in the final compost. Additionally, selective cultivation followed by colony PCR using specific primers is an appropriate method of determining levels of cultivable pathogens in composted materials.  相似文献   
185.
To develop a new method for the chemical recycling of plastics, we examined the formation of recycled polymers from the recovered monomeric materials of solubilized waste fiber-reinforced plastics (FRP) under supercritical alcoholic conditions. Treatment of waste FRP with supercritical MeOH resulted in the formation of monomeric organic compounds that mainly contained dimethyl phthalate (DMP) and propylene glycol. The presence of these materials was confirmed by gas chromatography and nuclear magnetic resonance analyses and they were mixed with new DMP and glycols in various ratios to form unsaturated polyesters. The polymerization progressed successfully for all mixing ratios of the recovered and new DMP. Hardness tests on these recycled polymers indicated that the polymer made from a 1:1 mixture of recovered and new dimethyl phthalate had almost the same level of hardness as the polymers made from new materials. We also examined the formation of recycled FRP by using glass fibers and monomeric materials recovered through the present depolymerization method. Chemical Feedstock Recycling & Other Innovative Recycling Techniques 6  相似文献   
186.
Permanganate treatment is widely used for disinfection of bacteria in surface-contaminated water. In this paper, the fate of the dissolved permanganate in aqueous solution after contact with cells of Pseudomonas fluorescens was studied. Concomitant accumulation of divalent cations of Mg~(2+), Zn~(2+), and Co~(2+) during precipitation of Mn oxides was also studied. The time course of the Mn concentration in solution showed an abrupt decrease after contact of Mn(VII) with microbial cells, followed by an increase after ~ 24 hr.XRD analysis of the precipitated Mn oxides, called biomass Mn oxides, showed the formation of low-crystalline birnessite. Visible spectroscopy and X-ray absorption near edge structure(XANES) analyses indicated that dissolved Mn(VII) was reduced to form biomass Mn oxides involving Mn(IV) and Mn(III), followed by reduction to soluble Mn(II).The numbers of electron transferred from microbial cells to permanganate and to biomass Mn oxides for 24 hr after the contact indicated that the numbers of electron transfer from microbial cell was approximately 50 times higher to dissolved permanganate than to the biomass Mn oxides in present experimental conditions. The 24 hr accumulation of divalent cations during formation of biomass Mn oxides was in the order of Co~(2+) Zn~(2+) Mg~(2+).XANES analysis of Co showed that oxidation of Co~(2+) to Co~(3+) resulted in higher accumulation of Co than Zn and Mg. Thus, treatment of surface water by KMnO_4 solution is effective not only for disinfection of microorganisms, but also for the elimination of metal cations from surface water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号