首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1691篇
  免费   16篇
  国内免费   73篇
安全科学   76篇
废物处理   186篇
环保管理   183篇
综合类   160篇
基础理论   279篇
环境理论   2篇
污染及防治   651篇
评价与监测   164篇
社会与环境   63篇
灾害及防治   16篇
  2023年   20篇
  2022年   37篇
  2021年   36篇
  2020年   15篇
  2019年   29篇
  2018年   44篇
  2017年   58篇
  2016年   82篇
  2015年   43篇
  2014年   71篇
  2013年   141篇
  2012年   105篇
  2011年   119篇
  2010年   97篇
  2009年   110篇
  2008年   122篇
  2007年   108篇
  2006年   100篇
  2005年   87篇
  2004年   83篇
  2003年   57篇
  2002年   62篇
  2001年   47篇
  2000年   21篇
  1999年   12篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1965年   1篇
排序方式: 共有1780条查询结果,搜索用时 0 毫秒
791.
Bae SW  Roh SA  Kim SD 《Chemosphere》2006,65(1):170-175
The effect of the additives on the selective non-catalytic reduction (SNCR) reaction has been determined in a three-stage laboratory scale reactor. The optimum reaction temperature is lowered and the reaction temperature window is widened with increasing concentrations of the gas additives (CO, CH4). The optimum reaction temperature is lowered and the maximum NO removal efficiency decreases with increasing the concentration of alcohol additives (CH3OH, C2H5OH). The addition of phenol lowers the optimum reaction temperature about 100-150 degrees C similar to that of the toluene addition. The volatile organic compounds (VOCs: C6H5OH, C7H8) can be utilized in the SNCR process to enhance NO reduction and removed at the same time. A previously proposed simple kinetic model can successfully apply the NO reduction by NH3 and the present additives.  相似文献   
792.
The decomposition of sodium dodecylbenzene sulfonate (SDBS) in water by means of ultrasound irradiation at 20kHz was investigated. Experiments were conducted at surfactant concentrations of 175, 260 and 350 mg l(-1), liquid volumes of 120, 170 and 220 ml, temperatures of 20, 30 and 45 degrees C and applied power of 40, 80 and 125 W. The extent of degradation was followed monitoring substrate and organic carbon concentrations, while hydrogen peroxide concentration was also measured; the latter is a product of water sonolysis due to hydroxyl radical recombination. 80% SDBS conversion was achieved after 120 min of sonication at 125 W and 30 degrees C; nonetheless, SDBS and its degradation intermediates proved difficult to oxidise as only about 20-25% of the initial carbon content was transformed to carbon dioxide. At the initial stages of the reaction, degradation rate appears to be only weakly dependent on the substrate concentration with the rate increasing from 3.1 to 4 mg l(-1)min(-1) with increasing concentration from 175 to 350 mg l(-1). Degradation appears to occur at the bubble-liquid interface through hydroxyl radical-mediated reactions whose role was established by performing experiments in the presence of radical scavengers, namely potassium bromide and sodium benzoate. Degradation rates increased with increasing power and decreasing temperature and volume.  相似文献   
793.
The phenomenon of self-ignition and explosion during discharge of high-pressure hydrogen was investigated. To clarify the ignition conditions of high-pressure hydrogen jets, rapid discharge of the high-pressure hydrogen was examined experimentally. A diaphragm was used to allow rapid discharge of the high-pressure hydrogen. The burst pressure was varied from 4 to 30 MPa. The downstream geometry of the diaphragm was a flange and extension pipes, with the pipe length varying from 3 to 300 mm. The diameter of the nozzle was 5 or 10 mm. When short pipes were used, the hydrogen jet did not ignite. However, the hydrogen jet showed an increasing tendency to ignite in the pipe as the length of the pipe became longer. At higher burst pressures, a diffusion jet flame was formed from the pipe. The blast wave from the fireball formed on self-ignition of the hydrogen jet resulted in an extremely rapid pressure rise.  相似文献   
794.
This paper presents the results from using a physical absorption process to absorb gaseous CO_2mixed with N_2using water by producing tiny bubbles via a liquid-film-forming device(LFFD)that improves the solubility of CO_2in water.The influence of various parameters—pressure,initial CO_2concentration,gas-to-liquid ratios,and temperature—on the CO_2removal efficiency and its absorption rate in water were investigated and estimated thoroughly by statistical polynomial models obtained by the utilization of the response surface method(RSM)with a central composite design(CCD).Based on the analysis,a high efficiency of CO_2capture can be reached in conditions such as low pressure,high CO_2concentration at the inlet,low gas/liquid ratio,and low temperature.For instance,the highest removal efficiency in the RSM–CCD experimental matrix of nearly 80%occurred for run number 20,which was conducted at 0.30 MPa,CO_2concentration of 35%,gas/liquid ratio of 0.71,and temperature of 15°C.Furthermore,the coefficients of determination,R~2,were 0.996 for the removal rate and 0.982 for the absorption rate,implying that the predicted values computed by the constructed models correlate strongly and fit well with the experimental values.The results obtained provide essential information for implementing this method properly and effectively and contribute a promising approach to the problem of CO_2capture in air pollution treatment.  相似文献   
795.
796.
797.
Daily data for fine (< 2.5 microns) and coarse (2.5-10 microns) particles are available for 1995-1997 from the U.S. Environmental Protection Agency (EPA) research monitor in Phoenix, AZ. Mortality effects on the 65 and over population were studied for both the city of Phoenix and for a region of about 50 mi around Phoenix. Coarse particles in Phoenix are believed to be natural in origin and spatially homogeneous, whereas fine particles are primarily vehicular in origin and concentrated in the city itself. For this reason, it is natural to focus on city mortality data when considering fine particles, and on region mortality data when considering coarse particles, and most of the results reported here correspond to those assignments. After allowing for seasonality and long-term trend through a nonlinear (B-spline) trend curve, and also for meteorological effects based on temperature and specific humidity, a regression of mortality was performed on PM using several different measures for PM. Based on a linear PM effect, we found a statistically significant coefficient for coarse particles, but not for fine particles, contrary to what is widely believed about the effects of coarse and fine particles. An analysis of nonlinear pollution-mortality relationships, however, suggests that the true picture is more complicated than that. For coarse particles, the evidence for any nonlinear or threshold-based effect is slight. For fine particles, we found evidence of a threshold, most likely with values in the range of 20-25 micrograms/m3. We also found some evidence of interactions of the PM effects with season and year. The main effect here is an apparent seasonal interaction in the coarse PM effect. An attempt was made to explain this in terms of seasonal variation in the chemical composition of PM, but this led to another counterintuitive result: the PM effect is highest in spring and summer, when the anthropogenic concentration of coarse PM is lowest as determined by a principal components analysis. There was no evidence of confounding between the fine and coarse PM effects. Although these results are based on one city and should be considered tentative until replicated in other studies, they suggest that the prevailing focus on fine rather than coarse particles may be an oversimplification. The study also shows that consideration of nonlinear effects can lead to real changes of interpretation and raises the possibility of seasonal effects associated with the chemical composition of PM.  相似文献   
798.
The CO2 and N2O soil emissions at a rice paddy in Mase, Japan, were measured by enclosures during a fallow winter season. The Mase site, one of the AsiaFlux Network sites in Japan, has been monitored for moisture, heat, and CO2 fluxes since August 1999. The paddy soil was found to be a source of both CO2 and N2O flux from this experiment. The CO2 and N2O fluxes ranged from -27.6 to 160.4 microg CO2/m2/sec (average of 49.1 +/- 42.7 microg CO2/m2/sec) and from -4.4 to 129.5 ng N2O/m2/sec (average of 40.3 +/- 35.6 ng N2O/m2/ sec), respectively. A bimodal trend, which has a sub-peak in the morning around 10:00 a.m. and a primary peak between 2:00 and 3:00 p.m., was observed. Gas fluxes increased with soil temperature, but this temperature dependency seemed to occur only on the calm days. Average CO2 and N2O fluxes were 27.7 microg CO2/m2/sec and 13.4 ng N2O/m2/sec, with relatively small fluctuation during windy days, while averages of 69.3 microg CO2/m2/sec and 65.8 ng N2O/m2/sec were measured during calm days. This relationship was thought to be a result of strong surface winds, which enhance gas exchange between the soil surface and the atmosphere, thus reducing the gas emissions from soil surfaces.  相似文献   
799.
The transport and biodegradation of 12 organic compounds (toluene, phenol, o-cresol, 2,6-, 3,5-dimethylphenol, naphthalene, 1-methylnaphthalene, benzothiophene, dibenzofuran, indole, acridine, and quinoline) were studied at a field site located on the island of Funen, Denmark, where a clayey till 10–15 m deep overlies a sandy aquifer. The upper 4.8 m of till is highly fractured and the upper 2.5 m contains numerous root and worm holes. A 1.5–2 m thick sand lens is encountered within the till at a depth of 4.8 m. Sampling points were installed at depths of 2.5 m, 4 m, and in the sand lens (5.5 m) to monitor the downward migration of a chloride tracer and the organic compounds. Water containing organic compounds and chloride was infiltrated into a 4 m×4.8 m basin at a rate of 8.8 m3 day−1 for 7 days. The mass of naphthalene relative to chloride was 0.39–0.98 for the sampling points located at a depth of 2.5 m, 0.11–0.61 for the sampling points located at a depth of 4 m, and 0–0.02 for the sampling points located in the sand lens. A similar pattern was observed for eight organic compounds for which reliable results were obtained (toluene, phenol, o-cresol, 2,6-, 3,5-dimethylphenol, 1-methylnaphthalene, benzothiophene, and quinoline). This shows that the organic compounds were attenuated during the downward migration through the till despite the high infiltration rate. The attenuation process may be attributed to biodegradation.  相似文献   
800.
This research investigated the role of the pH buffer capacity of sediment on the dechlorination of atrazine using zero valent iron (ZVI). The buffer capacity of the sediment was quantified by batch experiments and estimated to be 5.0 cmol OH? · pH?1. The sediments were spiked with atrazine at 7.25-36.23 mg kg?1 (6.21 × 10?7–3.09 × 10?6 mol atrazine · g?1 sediment) for the batch experiments. The buffer capacity of the sediment maintained the sediment suspension at neutral pH, thereby enabling continuous dechlorination until the buffer capacity of the sediment was depleted. The pseudo-first order dechlorination constants were estimated to be in the range of 1.19 × 10?2?7.04 × 10?2 d?1 for the atrazine-spiked sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号