首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   0篇
  国内免费   9篇
安全科学   6篇
废物处理   13篇
环保管理   12篇
综合类   34篇
基础理论   32篇
污染及防治   62篇
评价与监测   13篇
社会与环境   4篇
灾害及防治   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   10篇
  2017年   2篇
  2016年   9篇
  2015年   4篇
  2014年   7篇
  2013年   11篇
  2012年   17篇
  2011年   19篇
  2010年   7篇
  2009年   3篇
  2008年   8篇
  2007年   8篇
  2006年   4篇
  2005年   9篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1967年   1篇
  1965年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1921年   1篇
排序方式: 共有177条查询结果,搜索用时 140 毫秒
171.
Phytoextraction is a remediation technology with a promising application for removing arsenic (As) from soils and waters. Several plant species were evaluated for their As accumulation capacity in hydroponic culture amended with As. Cucumis sativus (cucumber) displayed the highest tolerance against As among 4 plants tested in this study (corn, wheat, sorghum and cucumber). The germination ratio of Cucumis sativus was more than 50% at the high concentration of 5,000 mg-As/l. In Cucumis sativus grown in a solution contaminated with 25 mg-As/l, the accumulated As concentrations in the shoot and root were 675.5 ± 11.5 and 312.0 ± 163.4 mg/kg, respectively, and the corresponding values of the translocation and bioaccumulation factors for As were 1.9 ± 0.9 and 21.1 ± 8.4, respectively. These results indicate Cucumis sativus is to be a candidate plant for phytoextraction of As from soils and water.  相似文献   
172.
In this study, zinc-contaminated soils were chosen as a candidate material for the removal of hydrogen sulfide (H2S) from hot coal-derived gas. Laboratory experiments showed that H2S was decreased to less than 10 ppm when the zinc-contaminated soils were reacted with H2S. The best removal temperature of H2S was found to be at 550°C in the operating conditions. In addition to zinc species, free iron oxides in contaminated soils also performed an active species to react with H2S and enhanced the sulfur capacity. Through the XPS analysis, iron sulfide (FeS) and zinc sulfide (ZnS) were the major products after removal experiments. Regeneration experimental results indicated that the zinc-contaminated soils can be regenerated by pass diluted air and thus be reused on the removal of H2S for many times.  相似文献   
173.
Effluent organic matter (EfOM) is the major cause of fouling in the low pressure membranes process for wastewater reuse. Coagulation and oxidation of biological wastewater treatment effluent have been applied for the fouling control of microfiltration membranes. However, the change in EfOM structure by pre-treatments has not been clearly identified. The changes of EfOM characteristics induced by coagulation and ozonation were investigated through size exclusion chromatography, UV/Vis spectrophotometry, fluorescence spectrophotometry and titrimetric analysis to identify the mechanisms in the reduction of ultrafiltration (UF) membrane fouling. The results indicated that reduction of flux decline by coagulation was due to modified characteristics of dissolved organic carbon (DOC) content. Total concentration of DOC was not reduced by ozonation. However, the mass fraction of the molecules with molecular weight larger than 5 kDa, fluorescence intensity, aromaticity, highly condensed chromophores, average molecular weight and soluble microbial byproducts decreased greatly after ozonation. These results indicated that EfOM was partially oxidized by ozonation to low molecular weight, highly charged compounds with abundant electron- withdrawing functional groups, which are favourable for alleviating UF membrane flux decline.  相似文献   
174.
We evaluated the settling ability and dewaterability of granulated methane-oxidizing bacteria (GMOB) after granulation using a continuous-flow reactor. A comparative analysis on settling and dewatering characteristics due to changes in sludge retention time (SRT, 10, 15 and 20 days) during cultivation of GMOB was conducted. In assessing dewaterability, the specific resistance to filtration (SRF) of activated sludge and GMOB was found to be 8.21×1013-2.38×1014 and 4.88 × 1012-1.98×1013 m/kg, respectively. It was confirmed that as SRT decreased, SRF of GMOB increased. In the case of bound extracellular polymeric substance (EPS), activated sludge registered 147.5 mg/g-VSS while GMOB exhibited 171-177.2 mg/g-VSS. In the case of extracellular polymeric substance soluble EPS in effluent, activated sludge measured 62 mg/L and GMOB had 17.4-21.4 mg/L. The particle size analysis showed that mean particle diameters of GMOB were 402, 369, and 350 μm, respectively, at SRTs of 20, 15 and 10 days. In addition, it was found that GMOB had a larger mean particle diameter and exhibited much better settleability and dewaterability than activated sludge did.  相似文献   
175.
Tailings, agricultural soils, vegetables and groundwater samples were collected from abandoned metal mines (Duckum, Dongil, Dongjung, Myoungbong and Songchun mines) in Korea. Total concentrations of arsenic (As) and heavy metals (Cd, Cu, Pb and Zn) were analyzed to investigate the contamination level. Several digestion methods (Toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), 0.1 N/1 N HCl) and sequential extraction analysis for mine tailings were conducted to examine the potential leachability of As and heavy metals from the tailings. The order of urgent remediation for the studied mines based on the risk assessment and remedial goals was suggested. The Songchun mine tailings were most severely contaminated by As and heavy metals. Total concentrations of As and Pb in the tailings were 38,600–58,700 mg/kg (av. 47,400 mg/kg) and 11,800–16,800 mg/kg (av. 14,600 mg/kg), respectively. Agricultural soils having high As concentrations were found at the all mines. Average concentrations of Cd in the vegetables exceeded the normal value at all mines areas, while As only at the Dongjung, Myoungbong, and Songchun mine area. One groundwater sample each from the Dongil and Myoungbong mines, and 4 groundwater samples from the Songchun mine had values above 10 μg/L of As concentration. The TCLP method revealed that only Pb in the Songchun tailings, 6.49 mg/L, exceeded the regulatory level (5 mg/L). Employing the 1-N HCl digestion method, the concentration of As in the Songchun mine tailings, 4,250 mg/kg, was up to 3,000 times higher than its Korean countermeasure standard. Results from the sequential extraction of As in the tailings showed that the easily releasable fraction in the Myoungbong and Songchun mine tailings was more than 30% and the residual fraction was less than 40%. Based on results showing the exposure health risk employing the hazard quotient and cancer risk of As, Cd and Zn, the Dongil mine needs the most urgent remedial action. The concentration reduction factor (CRF) of As in both soil and groundwater follows the order: Songchun>Dongjung>Dongil>Myoungbong>Duckum mine.  相似文献   
176.
The aim of this field study was to determine the concentrations and emissions of ammonia and hydrogen sulfide in different types of pig buildings in Korea to allow objective comparison between pig housing types in Korea and other countries. Concentrations of ammonia and hydrogen sulfide in the pig buildings averaged 7.5ppm and 286.5ppb and ranged from 0.8 to 21.4ppm and from 45.8 to 1235ppb, respectively. The mean emissions of ammonia and hydrogen sulfide per pig (normalized to 75kg liveweight) and area (m2) from pig buildings were 250.2 and 37.8mg/h/pig and 336.3 and 50.9mg/h/m2, respectively. Ammonia and hydrogen sulfide concentrations and emissions were higher in the pig buildings managed with deep-pit manure systems with slats and mechanical ventilation than in other housing types.  相似文献   
177.
利用垃圾焚烧飞灰掺入普通硅酸盐水泥制备水泥固化体,通过浸出性实验,研究了飞灰掺量(0%、20%、40%与60%)、浸出液pH及水洗预处理对水泥固化体抗压强度及重金属(Zn、Pb、Cu、Cd、Cr、Ni)浸出的影响。结果表明:对于非水洗飞灰水泥固化体,pH为4.2和10.0下浸出84 d时,相同组成固化体抗压强度较为接近,飞灰掺量20%,40%和60%的固化体抗压强度分别为41、15和10 MPa左右;除掺量为40%和60%的固化体浸出液中重金属(pH为4.2时Ni和Pb,pH为10.0时Ni)超出生活饮用水卫生标准(GB 5749-2006)外,掺量为40%和60%的固化体的其余浸出液及掺量20%的固化体浸出液中测定的重金属浓度均符合生活饮用水卫生标准。对于水洗飞灰水泥固化体,pH为4.2和10.0下浸出84 d时,相同组成固化体抗压强度较为接近,飞灰掺量20%、40%和60%的固化体抗压强度分别为37、32和10 MPa左右;除掺量为60%的固化体浸出液(pH为4.2和10.0)中Ni和Pb均超出生活饮用水卫生标准外,掺量为60%的固化体的其余浸出液及飞灰掺量20%和40%的固化体浸出液中测定的重金属浓度均符合生活饮用水卫生标准。飞灰水洗预处理提高了飞灰掺量40%水泥固化体抗压强度,同时降低了重金属浸出性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号