全文获取类型
收费全文 | 46篇 |
免费 | 0篇 |
专业分类
废物处理 | 6篇 |
环保管理 | 5篇 |
综合类 | 7篇 |
基础理论 | 9篇 |
污染及防治 | 15篇 |
评价与监测 | 1篇 |
社会与环境 | 2篇 |
灾害及防治 | 1篇 |
出版年
2017年 | 1篇 |
2014年 | 1篇 |
2013年 | 7篇 |
2012年 | 1篇 |
2011年 | 3篇 |
2010年 | 1篇 |
2008年 | 2篇 |
2006年 | 1篇 |
2005年 | 3篇 |
2004年 | 1篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 1篇 |
1999年 | 3篇 |
1996年 | 2篇 |
1993年 | 1篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1984年 | 2篇 |
1975年 | 1篇 |
1972年 | 1篇 |
1970年 | 1篇 |
1963年 | 1篇 |
1961年 | 1篇 |
1960年 | 2篇 |
1958年 | 1篇 |
排序方式: 共有46条查询结果,搜索用时 31 毫秒
21.
Watson JR Hays CG Raimondi PT Mitarai S Dong C McWilliams JC Blanchette CA Caselle JE Siegel DA 《Ecology》2011,92(6):1193-1200
Understanding the mechanisms that create spatial heterogeneity in species distributions is fundamental to ecology. For nearshore marine systems, most species have a pelagic larval stage where dispersal is strongly influenced by patterns of ocean circulation. Concomitantly, nearshore habitats and the local environment are also influenced by ocean circulation. Because of the shared dependence on the seascape, distinguishing the relative importance of the local environment from regional patterns of dispersal for community structure remains a challenge. Here, we quantify the "oceanographic distance" and "oceanographic asymmetry" between nearshore sites using ocean circulation modeling results. These novel metrics quantify spatial separation based on realistic patterns of ocean circulation, and we explore their explanatory power for intertidal and subtidal community similarity in the Southern California Bight. We find that these metrics show significant correspondence with patterns of community similarity and that their combined explanatory power exceeds that of the thermal structure of the domain. Our approach identifies the unique influence of ocean circulation on community structure and provides evidence for oceanographically mediated dispersal limitation in nearshore marine communities. 相似文献
22.
23.
Evaluating cumulative effects of disturbance on the hydrologic function of bogs,fens, and mires 总被引:2,自引:0,他引:2
Donald I. Siegel 《Environmental management》1988,12(5):621-626
Few quantitative studies have been done on the hydrology of fens, bogs, and mires. Consequently predicting the cumulative impacts of disturbances on their hydrologic functions is extremely difficult. For example, few data are available on the role of bogs and fens with respect to flood desynchronization and shoreline anchoring. However, recent studies suggest that very small amounts of groundwater discharge are sufficient to radically modify mire surface-water chemistry, and consequently, vegetation communities and their associated surface-water hydrology. Bogs and fens are, in a sense, hydrobiologic systems, and any evaluation of cumulative impacts will have to (1) consider the complicated and little understood interactions among wetland hydrology, water chemistry, and biota, and (2) place the effect of individual wetland impacts within the context of the cumulative impacts contributed to the watershed from other geomorphic areas and land uses.It is difficult to evaluate the potential cumulative impacts on wetland hydrology because geologic settings of wetlands are often complex and the methods used to measure wetland streamflow, groundwater flow, and evapotranspiration are inexact (Winter 1988). This is especially so for bogs, fens, and mires underlain by thick organic soils. These wetlands, found in the circumboreal areas of North America, Europe, and Asia, are major physiographic features in eastern North America, northern Europe, and Siberia (Kivenen and Pakarinen 1981, Gore 1983, Glaser and Janssens 1986). Their very scale makes it difficult to quantify the hydrologic function accurately. The hydrology of small bogs and fens found elsewhere is just as poorly understood because of conflicting conceptual models of pertinent hydrologic processes.This article (1) reviews our current understanding of the hydrologic function of bogs, fens, and mires at different scales and in different physiographic settings and (2) presents hypotheses on potential cumulative impacts on the hydrologic function that might occur with multiple disturbances. 相似文献
24.
SIMULATION OF REGIONAL GROUND WATER FLOW IN BEDROCK,SOUTHWESTERN NEW YORK-NORTHWESTERN PENNSYLVANIA1
ABSTRACT: This paper presents the results of steady-state three-dimensional computer simulations to determine the hydrogeologic setting of formation water in the hydrocarbon producing formations of southwestern New York and northwestern Pennsylvania. Recharge areas for the regional ground water flow systems in the study area are the Valley Heads Moraine and Allegheny uplands; discharge areas are Lakes Erie and Ontario to the north and the northern margin of the Appalachian basin to the south. Simulated ground water flow in all model layers moves north from the ground water divide on the Valley Heads Moraine towards Lake Erie at a rate from 10?-6 to 10?-3 ft/day. South of the divide intermediate-scale and local-scale flow systems occur in the upper 4000 feet of the stratigraphic section and the directions of ground water flow diverge towards major rivers and other topographically low areas. 相似文献
25.
Salting our landscape: an integrated catchment model using readily accessible data to assess emerging road salt contamination to streams 总被引:1,自引:0,他引:1
Jin L Whitehead P Siegel DI Findlay S 《Environmental pollution (Barking, Essex : 1987)》2011,159(5):1257-1265
A new integrated catchment model for salinity has been developed to assess the transport of road salt from upland areas in watersheds to streams using readily accessible landscape, hydrologic, and meteorological data together with reported salt applications. We used Fishkill Creek (NY) as a representative watershed to test the model. Results showed good agreement between modeled and measured stream water chloride concentrations. These results suggest that a dominant mode of catchment simulation that does not entail complex deterministic modeling is an appropriate method to model salinization and to assess effects of future applications of road salt to streams. We heuristically increased and decreased salt applications by 100% and results showed that stream chloride concentrations increased by 13% and decreased by 7%, respectively. The model suggests that future management of salt application can reduce environmental concentrations, albeit over some time. 相似文献
26.
Buschmann J Berg M Stengel C Winkel L Sampson ML Trang PT Viet PH 《Environment international》2008,34(6):756-764
This study presents a transnational groundwater survey of the 62,000 km(2) Mekong delta floodplain (Southern Vietnam and bordering Cambodia) and assesses human health risks associated with elevated concentrations of dissolved toxic elements. The lower Mekong delta generally features saline groundwater. However, where groundwater salinity is <1 g L(-)(1) Total Dissolved Solids (TDS), the rural population started exploiting shallow groundwater as drinking water in replacement of microbially contaminated surface water. In groundwater used as drinking water, arsenic concentrations ranged from 0.1-1340 microg L(-)(1), with 37% of the studied wells exceeding the WHO guidelines of 10 microg L(-)(1) arsenic. In addition, 50% exceeded the manganese WHO guideline of 0.4 mg L(-)(1), with concentrations being particularly high in Vietnam (range 1.0-34 mg L(-)(1)). Other elements of (minor) concern are Ba, Cd, Ni, Se, Pb and U. Our measurements imply that groundwater contamination is of geogenic origin and caused by natural anoxic conditions in the aquifers. Chronic arsenic poisoning is the most serious health risk for the ~2 million people drinking this groundwater without treatment, followed by malfunction in children's development through excessive manganese uptake. Government agencies, water specialists and scientists must get aware of the serious situation. Mitigation measures are urgently needed to protect the unaware people from such health problems. 相似文献
27.
28.
29.
Clayton W. Trumpolt Michael Crain Geoffrey D. Cullison Susan J. P. Flanagan Lenny Siegel Stephen Lathrop 《补救:环境净化治理成本、技术与工艺杂志》2005,16(1):65-89
Perchlorate contamination of groundwater and soil continues to be a hot topic in many sectors, including industry, the federal Departments of Defense and Energy, regulators, and the general public. This article presents information on what is currently known regarding perchlorate uses, known and suspected naturally occurring versus anthropogenic perchlorate sources, and past and present manufacturing locations. It provides the reader with a baseline as well as background information to facilitate an understanding of perchlorate in the environment for the ultimate purpose of remediation. The article is based on research conducted by the Interstate Technology Regulatory Council for a forthcoming, more substantial perchlorate overview document scheduled for publication later in 2005. The document will include an overview of the chemical and discussions of remediation techniques and methods of analysis. © 2005 Wiley Periodicals, Inc. 相似文献
30.